跳到主要內容

簡易檢索 / 詳目顯示

研究生: 高嘉偉
Jia-Wei Gao
論文名稱: 葉理岩體之超音波速探討
Study of ultrasonic velocity in foliated rocks
指導教授: 田永銘
Yong-Ming Tien
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 整份PDF檔數199
中文關鍵詞: 葉理岩體縱波異向性橫向等向性岩石超音波
外文關鍵詞: foliated rocks, P-wave anisotropy, transversely isotropic rock, ultrasonic
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文使用乾點式超音波試驗儀,以不同入射角量測天然岩石之超音波速,並針對具葉理之天然片岩以波速極座標圖呈現不同葉理夾角之波速異向性。參數研究方面,以不同波速、厚度互層排列方式作為參數變因,引用司乃爾定律(Snell’s law)計算不同模型葉理夾角之波速,以了解各項變因對波速極座標圖之影響。最後,本文以層狀互層材料模擬天然片岩之波速極座標圖,擬根據研究結果,探討葉理岩石波速異向性之成因及機制。


    The compositions, arrangement and mineral crystal orientation of rocks are affected by precipitation, earth stress or temperature... physical and chemical reactions during the diagenesis process. Hence, the mechanical behaviors (i.e. strength, elastic modulus, Poisson's ratio…) usually accompany anisotropy properties, such as: schist or jointed rock mass. For geotechnical engineering, the rock mechanical anisotropy plays an important role for tunnel, slope designs, and their constructions. Non-destructive ultrasonic testing can evaluate strength and deformability of rock material, which provides in-situ judgment basis.
    This paper presents Snell’s law to investigate wave propagation behavior of anisotropic rocks. This paper analyzes P-wave anisotropy of natural rocks from previous studies, and observes 3 different shapes of P-wave anisotropy, includes circular, ellipse, dumbbell-shaped, eye shape. Parametric study is addressed for determining the shapes of P-wave anisotropy. Finally, this paper will clarify the cause of P-wave anisotropy according to the parametric study.

    摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 XIII 第一章 緒論 1 1-1 研究背景與動機 1 1-2 研究方法與目的 2 1-3 論文架構 2 1-4 研究流程圖 3 第二章 文獻回顧 4 2-1 異向性 4 2-2 超音波性質概述 10 2-3 岩石與超音波波速相關性質 20 2-4 橫向等向性材料與超音波之相關研究 32 第三章 實驗規劃 52 3-1 試驗方法 52 3-2 超音波速試驗 52 3-3 本文模式推導 60 第四章 結果分析與討論 71 4-1 天然岩石超音波速量測 71 4-2 參數研究 89 4-3 理論模擬與天然岩石超音波速之比較 115 第五章 結論與建議 123 5-1 結論 123 5-2 建議 125 參考文獻 126 附錄A 超音波儀器校正塊之量測波速值 129 附錄B 天然岩石之各角度超音波速值 130

    [1] 王麒瑋,「層狀材料波傳行為之研究」,碩士論文,國立中央大學土木工程學系,中壢(2009)。
    [2] 胡庭秉,「超音波儀器之組裝及異向性岩石之超音波特性」,碩士論文,國立交通大學土木工程系,新竹(1995)。
    [3] 張家銘,「以熱探針法量測大地材料熱傳導係數之適用性」,國立中央大學土木工程系,中壢(2006)。
    [4] Amadei, B., Rogers, J. D., and Goodman, R. E., “Elastic constants and tensile strength of anisotropic rocks,” International Society for Rock Mechanics, Vol. 1, pp. 189–196 (1983).
    [5] Barla, G., “Rock anisotropy: theory and laboratory testing,” Rock mechanics, Vol. 165, pp. 131–169 (1974).
    [6] Birch, F., “The velocity of compressional waves in rocks to 10 kilobars: 2.,” Journal of Geophysical Research, Vol. 66, Issue 7, pp. 2199–2224 (1961).
    [7] Babuška, V., “A method for investigating the elastic anisotropy on spherical rock samples,” Journal of Geophysics, Vol. 33, pp. 289–291 (1967).
    [8] Jech, J., Babuska, V., and Pros, Z., “Quantitative correlation of velocity anisotropy with the distribution of micro cracks in rocks,” Union Czech, Prague (1985).
    [9] Chan, J., and Douglas, R., “Elastic anisotropy of a metamorphic rock sample of the Canadian Shield in Northeastern Alberta,” Rock Mechanics and Rock Engineering, Vol. 48, pp. 1369–1385 (2015).
    [10] Hakala, M., Kuula, H., and Hudson, J.A.,“Estimating the transversely isotropic elastic intact rock properties for in situ stress measurement data reduction: A case study of the Olkiluoto mica gnesiss, Finland,” International Journal of Rock Mechanics and Mining Sciences, Vol. 44, pp. 14-46 (2007).
    [11] Kahraman, S., “A correlation between P-wave velocity, number of joints and Schmidt hammer rebound number,” International Journal of Rock Mechanics and Mining Sciences, Vol. 38, pp. 729-733 (2001).
    [12] Kahraman, S., “Estimating the direct P-wave velovity value of intact rock from indirect laboratory measurements,” International Journal of Rock Mechanics and Mining Sciences, Vol. 39, pp. 101-104 (2002).
    [13] Kahraman, S., and Yeken, T.,“Determination of physical properties of carbonate rocks from P-wave velocity,” Bull. Eng. Geol. Environ, Vol. 67, pp. 277-281 (2008).
    [14] Lekhnitskii, S.G., Theory of elasticity of an anisotropic elastic body, Holden-Day, San Francisco (1963).
    [15] Song, I., and Suh, M., “Effects of foliation and microcracks on ultrasonic anisotropy in retrograde ultramafic and metamorphic rocks at shallow depths,” Journal of Applied Geophysics, Vol. 109, pp. 27-35 (2014).
    [16] Thomsen, L., “Weak elastic anisotropy,” Geophysics, Vol. 51, NO. 10, pp. 1954-1966 (1986).
    [17] Vajdová, V., Přikryl, R., Pros, Z., and Klíma K., “The effect rock fabric on P-wave velocity distrubtion in amphibolites,” Physis of the Earth and Planetary Interiors, Vol. 114, pp. 39-47 (1999).
    [18] Vernik, L., and Nur, A., “Ultrasonic velocity and aisotropy of hydrocarbon source rocks,” Geophysics, Vol. 57, No. 5, pp. 727-735 (1992).
    [19] Yasar, E., and Erdogan, Y., “Correlating sound velocity with the density, compressive strength and Young’s modulus of carbonate rocks,” International Journal of Rock Mechanics and Mining Sciences, Vol. 41, pp. 871-875 (2004).

    QR CODE
    :::