跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳韋誠
Wei-Cheng Chen
論文名稱: 碳黑改質對高電壓鋰離子電池正極電化學表現影響之研究
Study on Influence of Carbon Black Modification on Electrochemical Performance of High-Voltage Li-ion Batteries Cathode
指導教授: 劉奕宏
Yi-Hung Liu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 137
中文關鍵詞: 碳黑高電壓鋰離子電池氮摻雜正極
外文關鍵詞: Carbon black, High-voltage, Lithium ion battery, Nitrogen doping, Cathode
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於環保意識的提升導致全球的電動車銷售量持續增加,而電動車電池是提升電動車性能的關鍵之一,因此具備高能量密度的鋰離子電池需求量增加。各種鋰離子電池正極材料中,尖晶石 LiNi0.5Mn1.5O4 (LNMO) 的高工作電壓 (4.7 V vs. Li+/Li) 引起許多關注,然而,這種高電壓材料受限於商用電解液在 4.5 V 以上發生的劣化反應。這些劣化反應最終會造成電容不可逆的衰退。
    電極中通常會加入導電碳以提升電極中活性物質與黏著劑較低的導電性,而碳黑是其中一種普遍的導電碳且通常被認為是電極中具有電化學惰性的成分。然而,過去研究指出碳黑表面具有多種含氧官能基,可能加速電解液在高電壓的劣化。除此之外,有研究將氮摻雜碳材應用於鋰離子電池負極能夠透過加強鋰離子的嵌入/嵌出來提升電容量。
    為了探討碳黑上的含氧官能基與含氮官能基對於高電壓正極電化學表現的影響,此研究中透過對碳黑進行熱處理及硝酸氧化分別達到去除/生成含氧官能基的目的,並以水熱法分別對原始碳黑與氧化碳黑進行氮摻雜。此研究中透過 XPS、氮氣吸附儀及拉曼光譜分析不同改質方式對於碳黑表面官能基、元素組成、比表面積與缺陷程度的影響,以不同碳黑作為 LNMO/Li 半電池中的導電劑進行電化學表現測試。
    以原始碳黑進行氮摻雜的樣品具有高放電電容與優異的快速充放電表現及循環表現,在 1 C 的放電電容和原始碳黑相比由 110.1 mAh g-1提升至119.2 mAh g-1,快速充放電測試中在 5 C 的放電電容能夠維持 0.2 C放電電容的 69.4%,另外,儘管氮摻雜碳黑有最高的含氧量,經過 1 C 循環 100 圈後電容保持率仍有 94.4%。SEM 及 TEM 分析結果中,此樣品呈現較少的電極沉積物,將經過電化學劣化的電解液以 LC-MS/MS 分析,發現碳黑上的含氮官能基能減少電解液劣化產物並降低電解液主要成分的消耗量。由此研究發現以原始碳黑進行氮摻雜能有效提升高電壓正極的放電電容及快速充放電表現,並有維持高循環穩定性的效果。


    In recent years, the high energy density of Li-ion battery makes it become a popular battery type. Among various cathode materials, spinel LiNi0.5Mn1.5O4 (LNMO) has been investigated because of its high operating voltage (4.7 V vs. Li+/Li). However, LNMO is limited by the decomposition of commercial electrolyte at high voltage (> 4.5 V). Commercial electrolytes commonly use lithium hexafluorophosphate (LiPF6) dissolved in organic carbonates. However, decomposition of LiPF6 produces highly reactive PF5, which is thermally unstable and sensitive to moisture because of the unstable P-F bond. The instability of PF5 results in side reactions with water and organic carbonates, and eventually lead to capacity decay.
    To improve the poor electronic conductivity of active material and binder, conductive additives are added into electrode. Carbon black (CB) is one of the common conductive additives considered to be inactive component. However, various functional groups were found on CB surface. Oxygen-containing functional groups could increase the absorption of water and lead to electrolyte decomposition. Nitrogen-doped carbon materials have been applied on anode materials of Li-ion batteries to improve Li-ion storage capacity, ion diffusion and electrical conductivity.
    To study the influences of oxygen-functional groups and nitrogen-functional groups of CB on electrochemical performance of high-voltage cathode. In this work, oxygen-functional groups on CB were modified by thermal treatments and nitric acid treatment. In addition, hydrothermal treatment was applied on CB and oxidized CB for N-doping. Surface functional groups, elemental composition, specific surface area and defects degree of CB were analyzed by XPS, gas sorption analyzer, raman spectroscopy. These CB were used as conductive additives in high voltage cathode and assembled into LNMO/Li half-cell for electrochemical testing.
    Among all of the samples, N-doped CB shows high discharge capacity (119.2 mAh g-1), excellent rate capability (Discharge capacity at 5 C retains 69.4% of capacity at 0.2 C) and high cycling stability (94.4% capacity retention after 100 cycles at 1 C). In the results of SEM and TEM, this sample shows less deposition on electrode. After electrochemical aging, the electrolyte decomposition products were analyzed by LC-MS/MS. The results suggested NCB with nitrogen functional groups would reduce amount of decomposition products and the consumption of main compositions of electrolyte. According to this study, N-doped CB can effectively improve discharge capacity and rate performance, even cycling stability of high-voltage cathode.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vii 表目錄 xi 第一章、序論 1 1-1鋰離子電池運作原理 1 1-2鋰離子電池特性 1 1-3鋰離子電池發展近況 4 1-4鋰離子電池組成材料 6 1-4-1正極材料 6 1-4-2負極材料 9 1-4-3 電解液 11 1-4-4 導電劑 13 1-4-5 集電體 13 1-4-6黏著劑 17 1-4-7隔離膜 17 1-5 研究動機 20 第二章、文獻回顧 21 2-1 LiNi0.5Mn1.5O4 (LNMO) 正極材料 21 2-2 電解液劣化 25 2-3 碳黑改質 28 2-4 碳纖維集電體 34 第三章、實驗方法 37 3-1實驗架構 37 3-2製備改質碳黑 41 3-3製備電極與鈕扣電池 43 3-4材料分析 44 3-4-1 氣體吸附儀 (Gas Sorption Analyzer) 44 3-4-2 拉曼光譜儀 (Raman Spectroscope) 46 3-4-3 X 射線光電子能譜分析(X ray Photoelectron Spectroscopy, XPS) 46 3-4-4 熱重分析儀 (Thermogravimetric Analyzer, TGA) 47 3-4-5 超高解析場發射掃描式電子顯微鏡 (Ultra-high Resolution Field Emission Scanning Electron Microscope, UHR FE-SEM) 47 3-4-6 穿透式電子顯微鏡 (Transmission Electron Microscopy, TEM) 48 3-4-7 液相層析串聯質譜儀(Liquid chromatography-tandem mass spectrometry, LC-MS/MS) 48 3-5電化學分析 49 3-5-1 電池自動化充放電測試儀 (Battery Automation Test Systems) 50 3-5-2 恆電位儀 (Potentiostat) 50 第四章、結果與討論 52 4-1 熱處理碳黑 52 4-1-1 比表面積分析 52 4-1-2 拉曼光譜分析 52 4-1-3 表面官能基分析 55 4-1-4 循環壽命測試 57 4-1-5 快速充放電測試 62 4-1-6 電化學阻抗分析 62 4-1-7 極片表面型態分析 68 4-2 氧化碳黑與氮摻雜碳黑 70 4-2-1 比表面積分析 70 4-2-2 拉曼光譜分析 72 4-2-3 表面官能基分析 72 4-2-4 熱重分析 78 4-2-5 循環壽命測試 80 4-2-6 快速充放電測試 85 4-2-7 電化學阻抗分析 88 4-2-8 極片表面型態分析 92 4-2-9 極片橫切面型態分析 92 4-2-10 電解液劣化產物分析 98 第五章、結論與未來展望 106 5-1 結論 106 5-1-1 熱處理碳黑 106 5-1-2 硝酸氧化碳黑與氮摻雜碳黑 107 5-2 未來展望 109 第六章、參考文獻 110

    1.https://www.nedo.go.jp/hyokabu/articles/200905hitachi/img/c01_1.jpg. New Energy and Industrial Technology Development Organization.
    2.Lithium Ion technical handbook. 2003: Gold Peak Industries Ltd.
    3.C. Pillot, The Rechargeable Battery Market and Main Trends 2018-2030. 2019: International Congress for Battery Recycling. p. 1-25.
    4.N. Bizon, Hybrid power sources topology with active mitigation of inverter current ripple. 2013.
    5.N. Nitta, F. Wu, J. T. Lee, and G. Yushin, Li-ion battery materials: present and future. Materials Today, 2015. 18(5): p. 252-264.
    6.J. Chen, Recent Progress in Advanced Materials for Lithium Ion Batteries. Materials (Basel), 2013. 6(1): p. 156-183.
    7.G. Zubi, R. Dufo-López, M. Carvalho, and G. Pasaoglu, The lithium-ion battery: State of the art and future perspectives. Renewable and Sustainable Energy Reviews, 2018. 89: p. 292-308.
    8.I. B. H. M. Wu, H. Deng, A. Abouimrane, Y.-K. Sun, and and K. Amine, Development of LiNi0.5Mn1.5O4/Li4Ti5O12 System with Long Cycle Life. Journal of The Electrochemical Society, 2009. 156(12): p. A1047-A1050.
    9.G. Liang, Z. Wu, C. Didier, W. Zhang, J. Cuan, B. Li, K. Y. Ko, P. Y. Hung, C. Z. Lu, Y. Chen, G. Leniec, S. M. Kaczmarek, B. Johannessen, L. Thomsen, V. K. Peterson, W. K. Pang, and Z. Guo, A Long Cycle-Life High-Voltage Spinel Lithium-Ion Battery Electrode Achieved by Site-Selective Doping. Angew Chem Int Ed Engl, 2020. 59(26): p. 10594-10602.
    10.K. Yang, X. Liu, L. Lu, S. Wang, and P. Liu, The simulation on thermal stability of LiNi0.5Mn1.5O4/C electrochemical systems. Journal of Power Sources, 2016. 302: p. 1-6.
    11.X. Feng, M. Ouyang, X. Liu, L. Lu, Y. Xia, and X. He, Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Materials, 2018. 10: p. 246-267.
    12.J. Xiao, How lithium dendrites form in liquid batteries. Science, 2019. 366(6464): p. 426-427.
    13.K. W. S. Chen, J. Fan, Y. Bando and D. Golberg, Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: From liquid to solid electrolytes. Journal of Materials Chemistry A, 2018. 6(25): p. 11631-11663.
    14.S. Tan, Y. J. Ji, Z. R. Zhang, and Y. Yang, Recent progress in research on high-voltage electrolytes for lithium-ion batteries. Chemphyschem, 2014. 15(10): p. 1956-69.
    15.K. Xu, Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chem. Rev. , 2004. 104: p. 4303−4417.
    16.C. Schultz, S. Vedder, B. Streipert, M. Winter, and S. Nowak, Quantitative investigation of the decomposition of organic lithium ion battery electrolytes with LC-MS/MS. RSC Advances, 2017. 7(45): p. 27853-27862.
    17.X. Qi, B. Blizanac, A. DuPasquier, A. Lal, P. Niehoff, T. Placke, M. Oljaca, J. Li, and M. Winter, Influence of Thermal Treated Carbon Black Conductive Additive on the Performance of High Voltage Spinel Cr-Doped LiNi0.5Mn1.5O4Composite Cathode Electrode. Journal of The Electrochemical Society, 2014. 162(3): p. A339-A343.
    18.R. I. R. Blyth, XPS studies of graphite electrode materials for lithium ion batteries. Applied Surface Science 2000. 167: p. 99-106.
    19.D. Pantea, H. Darmstadt, S. Kaliaguine, and C. Roy, Electrical conductivity of conductive carbon blacks: influence of surface chemistry and topology. Applied Surface Science, 2003. 217(1-4): p. 181-193.
    20.N. P. W. Pieczonka, L. Yang, M. P. Balogh, B. R. Powell, K. Chemelewski, A. Manthiram, S. A. Krachkovskiy, G. R. Goward, M. Liu, and J.-H. Kim, Impact of Lithium Bis(oxalate)borate Electrolyte Additive on the Performance of High-Voltage Spinel/Graphite Li-Ion Batteries. The Journal of Physical Chemistry C, 2013. 117(44): p. 22603-22612.
    21.M. Yamada, T. Watanabe, T. Gunji, J. Wu, and F. Matsumoto, Review of the Design of Current Collectors for Improving the Battery Performance in Lithium-Ion and Post-Lithium-Ion Batteries. Electrochem, 2020. 1(2): p. 124-159.
    22.e. a. A. J. Bard, Standard Potentials in Aqueous Solutions. Microchemical journal, 1986. 34: p. 245-247.
    23.S.-T. Myung, Y. Sasaki, S. Sakurada, Y.-K. Sun, and H. Yashiro, Electrochemical behavior of current collectors for lithium batteries in non-aqueous alkyl carbonate solution and surface analysis by ToF-SIMS. Electrochimica Acta, 2009. 55(1): p. 288-297.
    24.S.-H. Yook, S.-H. Kim, C.-H. Park, and D.-W. Kim, Graphite–silicon alloy composite anodes employing cross-linked poly(vinyl alcohol) binders for high-energy density lithium-ion batteries. RSC Advances, 2016. 6(86): p. 83126-83134.
    25.W.-R. Liu, M.-H. Yang, H.-C. Wu, S. M. Chiao, and N.-L. Wu, Enhanced Cycle Life of Si Anode for Li-Ion Batteries by Using Modified Elastomeric Binder. Electrochemical and Solid-State Letters, 2005. 8(2).
    26.H. Lee, M. Yanilmaz, O. Toprakci, K. Fu, and X. Zhang, A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ. Sci., 2014. 7(12): p. 3857-3886.
    27.J. Zhu, M. Yanilmaz, K. Fu, C. Chen, Y. Lu, Y. Ge, D. Kim, and X. Zhang, Understanding glass fiber membrane used as a novel separator for lithium–sulfur batteries. Journal of Membrane Science, 2016. 504: p. 89-96.
    28.A. El Kharbachi, O. Zavorotynska, M. Latroche, F. Cuevas, V. Yartys, and M. Fichtner, Exploits, advances and challenges benefiting beyond Li-ion battery technologies. Journal of Alloys and Compounds, 2020. 817.
    29.G. B. Zhong, Y. Y. Wang, Z. C. Zhang, and C. H. Chen, Effects of Al substitution for Ni and Mn on the electrochemical properties of LiNi0.5Mn1.5O4. Electrochimica Acta, 2011. 56(18): p. 6554-6561.
    30.D. Liu, W. Zhu, J. Trottier, C. Gagnon, F. Barray, A. Guerfi, A. Mauger, H. Groult, C. M. Julien, J. B. Goodenough, and K. Zaghib, Spinel materials for high-voltage cathodes in Li-ion batteries. RSC Adv., 2014. 4(1): p. 154-167.
    31.X. Xu, S. Deng, H. Wang, J. Liu, and H. Yan, Research Progress in Improving the Cycling Stability of High-Voltage LiNi0.5Mn1.5O4 Cathode in Lithium-Ion Battery. Nanomicro Lett, 2017. 9(2): p. 22.
    32.N. P. W. Pieczonka, Z. Liu, P. Lu, K. L. Olson, J. Moote, B. R. Powell, and J.-H. Kim, Understanding Transition-Metal Dissolution Behavior in LiNi0.5Mn1.5O4 High-Voltage Spinel for Lithium Ion Batteries. The Journal of Physical Chemistry C, 2013. 117(31): p. 15947-15957.
    33.E. Krämer, T. Schedlbauer, B. Hoffmann, L. Terborg, S. Nowak, H. J. Gores, S. Passerini, and M. Winter, Mechanism of Anodic Dissolution of the Aluminum Current Collector in 1 M LiTFSI EC:DEC 3:7 in Rechargeable Lithium Batteries. Journal of The Electrochemical Society, 2012. 160(2): p. A356-A360.
    34.B. Streipert, S. Röser, J. Kasnatscheew, P. Janßen, X. Cao, R. Wagner, I. Cekic-Laskovic, and M. Winter, Influence of LiPF6 on the Aluminum Current Collector Dissolution in High Voltage Lithium Ion Batteries after Long-Term Charge/Discharge Experiments. Journal of The Electrochemical Society, 2017. 164(7): p. A1474-A1479.
    35.S.-T. Myung, Y. Hitoshi, and Y.-K. Sun, Electrochemical behavior and passivation of current collectors in lithium-ion batteries. Journal of Materials Chemistry, 2011. 21(27).
    36.G. Zhou, C. Xu, W. Cheng, Q. Zhang, and W. Nie, Effects of Oxygen Element and Oxygen-Containing Functional Groups on Surface Wettability of Coal Dust with Various Metamorphic Degrees Based on XPS Experiment. J Anal Methods Chem, 2015. 2015: p. 467242.
    37.P. J. Hall, M. Mirzaeian, S. I. Fletcher, F. B. Sillars, A. J. R. Rennie, G. O. Shitta-Bey, G. Wilson, A. Cruden, and R. Carter, Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy & Environmental Science, 2010. 3(9).
    38.Q. D. Nguyen, Y.-H. Wu, T.-Y. Wu, M.-J. Deng, C.-H. Yang, and J.-K. Chang, Gravimetric/volumetric capacitances, leakage current, and gas evolution of activated carbon supercapacitors. Electrochimica Acta, 2016. 222: p. 1153-1159.
    39.J. Zheng, J. Xiao, W. Xu, X. Chen, M. Gu, X. Li, and J.-G. Zhang, Surface and structural stabilities of carbon additives in high voltage lithium ion batteries. Journal of Power Sources, 2013. 227: p. 211-217.
    40.K. Friedel Ortega, R. Arrigo, B. Frank, R. Schlögl, and A. Trunschke, Acid–Base Properties of N-Doped Carbon Nanotubes: A Combined Temperature-Programmed Desorption, X-ray Photoelectron Spectroscopy, and 2-Propanol Reaction Investigation. Chemistry of Materials, 2016. 28(19): p. 6826-6839.
    41.S. M. Jung, E. K. Lee, M. Choi, D. Shin, I. Y. Jeon, J. M. Seo, H. Y. Jeong, N. Park, J. H. Oh, and J. B. Baek, Direct solvothermal synthesis of B/N-doped graphene. Angew Chem Int Ed Engl, 2014. 53(9): p. 2398-401.
    42.I.-Y. Jeon, S.-H. Shin, H.-J. Choi, S.-Y. Yu, S.-M. Jung, and J.-B. Baek, Heavily aluminated graphene nanoplatelets as an efficient flame-retardant. Carbon, 2017. 116: p. 77-83.
    43.Q. Fan, H.-J. Noh, Z. Wei, J. Zhang, X. Lian, J. Ma, S.-M. Jung, I.-Y. Jeon, J. Xu, and J.-B. Baek, Edge-thionic acid-functionalized graphene nanoplatelets as anode materials for high-rate lithium ion batteries. Nano Energy, 2019. 62: p. 419-425.
    44.V. M. B. G. Sumpter, J. M. Romo-Herrera, E. Cruz-Silva, D. A. Cullen, H. Terrones, D. J. Smith, and M. Terrones, Nitrogen-Mediated Carbon Nanotube Growth: Diameter Reduction, Metallicity, Bundle Dispersability, and Bamboo-like Structure Formation. ACS Nano, 2007. 1: p. 369-375.
    45.J. Wu, Z. Pan, Y. Zhang, B. Wang, and H. Peng, The recent progress of nitrogen-doped carbon nanomaterials for electrochemical batteries. Journal of Materials Chemistry A, 2018. 6(27): p. 12932-12944.
    46.W. H. Shin, H. M. Jeong, B. G. Kim, J. K. Kang, and J. W. Choi, Nitrogen-doped multiwall carbon nanotubes for lithium storage with extremely high capacity. Nano Lett, 2012. 12(5): p. 2283-8.
    47.I. Y. Jeon, H. J. Noh, and J. B. Baek, Nitrogen-Doped Carbon Nanomaterials: Synthesis, Characteristics and Applications. Chem Asian J, 2020. 15(15): p. 2282-2293.
    48.C. Ma, X. Shao, and D. Cao, Nitrogen-doped graphene nanosheets as anode materials for lithium ion batteries: a first-principles study. Journal of Materials Chemistry, 2012. 22(18).
    49.J. Gu, Z. Du, C. Zhang, and S. Yang, Pyridinic Nitrogen-Enriched Carbon Nanogears with Thin Teeth for Superior Lithium Storage. Advanced Energy Materials, 2016. 6(18).
    50.G. Zhou, E. Paek, G. S. Hwang, and A. Manthiram, Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nat Commun, 2015. 6: p. 7760.
    51.J. W. Hu, Z. P. Wu, S. W. Zhong, W. B. Zhang, S. Suresh, A. Mehta, and N. Koratkar, Folding insensitive, high energy density lithium-ion battery featuring carbon nanotube current collectors. Carbon, 2015. 87: p. 292-298.
    52.X. Wang, Z. Zhang, Y. Qu, Y. Lai, and J. Li, Nitrogen-doped graphene/sulfur composite as cathode material for high capacity lithium–sulfur batteries. Journal of Power Sources, 2014. 256: p. 361-368.
    53.Standard Test Method for Carbon Black—Total and External Surface Area by Nitrogen Adsorption. ASTM International, 1999: p. D4820-99.
    54.C. Bosch-Navarro, E. Coronado, C. Marti-Gastaldo, J. F. Sanchez-Royo, and M. G. Gomez, Influence of the pH on the synthesis of reduced graphene oxide under hydrothermal conditions. Nanoscale, 2012. 4(13): p. 3977-82.
    55.Q. Miao, L. Wang, Z. Liu, B. Wei, J. Wang, X. Liu, and W. Fei, Effect of defects controlled by preparation condition and heat treatment on the ferromagnetic properties of few-layer graphene. Sci Rep, 2017. 7(1): p. 5877.
    56.M. Belhachemi and F. Addoun, Effect of Heat Treatment on the Surface Properties of Activated Carbons. E-Journal of Chemistry, 2011. 8(3): p. 992-999.
    57.A. R. T.Jawhari, J.Casado, Raman spectroscopic characterization of some commercially available carbon black materials. Carbon, 1995. 33(11): p. 1561-1565.
    58.H. P. BOEHM, Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon, 1994. 32: p. 759-769.
    59.Jahromi and Ghahreman, Effect of Surface Modification with Different Acids on the Functional Groups of AF 5 Catalyst and Its Catalytic Effect on the Atmospheric Leaching of Enargite. Colloids and Interfaces, 2019. 3(2).
    60.R. Wang, X. Chen, Z. Huang, J. Yang, F. Liu, M. Chu, T. Liu, C. Wang, W. Zhu, S. Li, S. Li, J. Zheng, J. Chen, L. He, L. Jin, F. Pan, and Y. Xiao, Twin boundary defect engineering improves lithium-ion diffusion for fast-charging spinel cathode materials. Nat Commun, 2021. 12(1): p. 3085.
    61.S. Wang, P. Li, L. Shao, K. Wu, X. Lin, M. Shui, N. Long, D. Wang, and J. Shu, Preparation of spinel LiNi0.5Mn1.5O4 and Cr-doped LiNi0.5Mn1.5O4 cathode materials by tartaric acid assisted sol–gel method. Ceramics International, 2015. 41(1): p. 1347-1353.
    62.J. Z. Li Wang, Xiangming He*, Jian Gao, Jianjun Li, Chunrong Wan, Changyin Jiang, Electrochemical Impedance Spectroscopy (EIS) Study of LiNi1/3Co1/3Mn1/3O2 for Li-ion Batteries. Int. J. Electrochem. Sci., 2012. 7: p. 345-353.
    63.W. R. Zhong-Shuai Wu, Li Xu, Feng Li, and Hui-Ming Cheng, Doped Graphene Sheets As Anode Materials with Superhigh Rate and Large Capacity for Lithium Ion Batteries. ACS Nano, 2011. 5: p. 5463–5471.
    64.X. Li, D. Geng, Y. Zhang, X. Meng, R. Li, and X. Sun, Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries. Electrochemistry Communications, 2011. 13(8): p. 822-825.
    65.A. L. Reddy, A. Srivastava, S. R. Gowda, H. Gullapalli, M. Dubey, and P. M. Ajayan, Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano, 2010. 4(11): p. 6337-42.
    66.S. Jalili and R. Vaziri, Study of the electronic properties of Li-intercalated nitrogen doped graphite. Molecular Physics, 2011. 109(5): p. 687-694.
    67.Y. Shang, H. Xu, M. Li, and G. Zhang, Preparation of N-Doped Graphene by Hydrothermal Method and Interpretation of N-Doped Mechanism. Nano, 2017. 12(02).
    68.Y. Zhou, Q. Bao, L. A. L. Tang, Y. Zhong, and K. P. Loh, Hydrothermal Dehydration for the “Green” Reduction of Exfoliated Graphene Oxide to Graphene and Demonstration of Tunable Optical Limiting Properties. Chemistry of Materials, 2009. 21(13): p. 2950-2956.
    69.S. A. Shamsuddin, M. N. Derman, J. M. Ismail, N. H. A. Halim, U. Hashim, and M. Rusop, The effect of nitric acid oxidation parameters to the structural and electrochemical behavior of multi-walled carbon nanotubes. 2018.
    70.L. Sun, L. Wang, C. Tian, T. Tan, Y. Xie, K. Shi, M. Li, and H. Fu, Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage. RSC Advances, 2012. 2(10).
    71.Y. Ma, L. Wang, X. Yang, and R. Zhang, Environmental-Friendly Synthesis of Alkyl Carbamates from Urea and Alcohols with Silica Gel Supported Catalysts. Catalysts, 2018. 8(12).

    QR CODE
    :::