跳到主要內容

簡易檢索 / 詳目顯示

研究生: 葉昭男
Chao-Nan Yeh
論文名稱: 鋁鍺雙層薄膜之擴散行為與金屬誘發結晶現象研究
Elucidating the Metal-induced Crystallization and Diffusion Behavior of Al/a-Ge Bilayer Thin Film
指導教授: 吳子嘉
Albert T. Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 99
語文別: 中文
論文頁數: 68
中文關鍵詞: 氣密性封裝微機電封裝層交換金屬誘發結晶共晶接合
外文關鍵詞: MEMS packaging, layer exchange, hermetic sealing, metal-induced-crystallization, eutectic bonding
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在MEMS元件重視內部腔體氣密性能力的同時,鋁鍺薄膜不失為一種良好的氣密性共晶接合材料,除了可在較低溫下進行接合的優點外,且金屬與半導體接合後形成緻密結構亦是重要因素,因此本研究主要探討Al-Ge薄膜在退火後薄膜表面形貌的觀察與Al-Ge擴散行為之動力學機制。本實驗選用磁控式濺鍍機(Magnetron Sputtering)為鍍膜設備,在壓力約10^-5 Torr下製備a-Ge(100 nm)/Al (100 nm)/Si substrate的雙層膜結構。將試片在真空下封入玻璃管中後分別放入200°C、300°C和400°C之高溫爐管中,退火時間從一天、五天、十天、十五天到二十天,另外製作室溫下的三種試片:剛鍍好的試片、放置十六天以及放置七十天之試片,用以比較室溫下不同時間對Al-Ge薄膜交互擴散之影響。試片分析儀器為掃描式電子顯微鏡(SEM)、能量散佈分析儀(EDS)、X射線光電子能譜儀(XPS)、低掠角X射線繞射儀(GIXRD)。
      從XPS以及SEM觀察室溫下時間因素並不會影響薄膜之交互擴散行為;200°C下退火薄膜表面開始出現富鋁區析出物,表示Al-Ge之間進行交互擴散現象;300°C下退火十天薄膜發生層交換 (Layer exchange) 現象,依實驗觀察以及文獻理論探討Al-Ge薄膜層交換之動力學機制,並推測Al原子擴散至Ge表面的主要路徑為Ge的晶界。400°C下退火試片表面出現巨大突起物,應為薄膜升溫過程中承受來自基板壓應力,為釋放應力而向外擠出突起物。


      Eutectic alunimun/amorphous-germanium (Al/a-Ge) bilayer thin film is characterized by its remarkable hermetic sealing in wafer-level bonding in microelectromechanical system (MEMS) devices. This study investigates metal-induced crystallization (MIC) of the amorphous Ge and the layer exchange of Al and Ge. The a-Ge(100 nm)/Al(100 nm) bilayer thin films were deposited by sputtering technique and separately sealed in glass tubes in a vacuum of 10^-3 Torr. The samples were analyzed mainly by scanning electron microscopy (SEM), energy dispersive Spectrometer (EDS) analysis, and x-ray photoelectron spectroscopy (XPS). From the results we found that the diffusion behavior was impervious to the time evolution at room temperature. a-Ge began induced crystallization by Al when annealing at 200°C. Layer exchange of Al and Ge occurred at 300°C of annealing for 10 days. A kinetic mechanism is developed to explain the layer exchange phenomenon of Al and Ge system. Extrusions were found on the surfaces of the samples annealed at 400°C due to stress relaxation.

    中文摘要.................................I 英文摘要. ..............................II 誌謝.......................................III 目錄.......................................IV 圖目錄...................................VI 表目錄...................................IX 第一章 序論..........................................................................................................1 1.1 微機電封裝 (MEMS packaging) 簡介.........................................................1 1.2 MEMS封裝技術簡介....................................................................................3 1.3 氣密性封裝 (Hermetic sealing).....................................................................6 第二章 文獻回顧..................................................................................................8 2.1 鋁鍺共晶系統.................................................................................................8 2.2 鋁鍺共晶薄膜在MEMS封裝的發展...........................................................9 2.2.1 鍵結測試與氣密測試..................................................................................9 2.2.2 壓力對Al-Ge薄膜共晶接合能力之影響................................................11 2.2.3 Al-Ge薄膜共晶接合製程改良.................................................................13 2.2.4 Al-Ge薄膜共晶接合微結構觀察.............................................................14 2.3 金屬誘發結晶 (Metal-induced Crystallization, MIC) 現象.......................16 2.4 MIC現象形成機制.......................................................................................21 2.5 層交換 (Layer exchange) 現象...................................................................27 2.6 Al-Ge薄膜之表面形貌................................................................................29 2.7 研究動機.......................................................................................................31 第三章 實驗方法................................................................................................32 3.1 濺鍍系統簡介...............................................................................................32 3.2 基材準備與薄膜沉積製程...........................................................................32 3.3 製備真空環境與退火條件...........................................................................33 3.4 鋁鍺薄膜試片分析方法...............................................................................34 3.4.1 掃描式電子顯微鏡 (Scanning Electron Microscopy, SEM)...................34 3.4.2 能量散佈分析儀 (Energy Dispersive Spectrometer, EDS)......................35 3.4.3 X射線光電子能譜儀 (X-Ray Photoelectron Spectroscopy, XPS).........35 3.4.4 低掠角X射線繞射儀 (Grazing Incident X-Ray Diffraction, GIXRD)..36 3.4.5 電子微探儀 (Electron Probe Micro-Analyzer, EPMA)............................36 第四章 結果與討論............................................................................................38 4.1 鋁鍺雙層薄膜擴散現象之觀察...................................................................38 4.2 鋁鍺雙層薄膜之縱深分佈分析圖...............................................................41 4.3 鋁鍺雙層薄膜之擴散行為與層交換動力學機制探討...............................45 4.4 鋁鍺雙層薄膜表面突起物的生成現象與形成原因...................................58 第五章 結論........................................................................................................60 參考文獻................................................................................................................62

    1. STMicroelectronics:Gyroscope, http://www.compotechasia.com/articleinfo.php?cid=33&id=14570
    2. R. Ramesham and R. Ghaffarian, “Challenges in interconnection and packaging of microelectromechanical systems (MEMS)”, IEEE Electronic Components and Technology Conference, 666-674, 2000
    3. K. Persson and K. Boustedt,“Fundamental requirements on MEMS packaging and reliability”, IEEE 8th International Symposium on Advanced Packaging Materials, 1-6, 2002
    4. S. J. Ham, Y. C. Sohn, W. B. Kim and C. Y. Moon, “Wafer-level MEMS packaging”, http://www.emc3d.org/documents/library/technical/SAIT-WLuP.pdf
    5. T. R. Anthony, “Anodic bonding of imperfect surfaces”, Appl. Phys., 54, 2419-2428, 1983
    6. R. Legtenber, S. Bouwstra and M. Elwenspoek, “Low-temperature glass bonding for sensor applications”, Micro Mechanics Europe Conference, MME, Berlin, Germany, 94-99, 1990
    7. G. Wallis and D. I. Pomerantz, “Field assisted glass-metal sealing”, J. Appl. Phys., 40, 3946-3949, 1969
    8. C. Harendt, H. G. Graf, B. Hofflinger and E. Penteker, “Silicon fusion bonding and its characterization”, J. Micromech. Microeng., 2, 113-116, 1992
    9. C. Harendt, B. Hofflinger, H. G. Graf and E. Penteker, “Silicon direct bonding for sensor applications: characterization of the bond quality”, Sens. Actuators, A, 25, 87-92, 1991
    10. P. W. Barth, “Silicon fusion bonding for fabrication of sensors, actuators and microstructures”, Proc. Transducers, Int. Conf. Solid-State Sensors and Actuators, 2632-2664, 1989
    11. M. Shimbo, K. Furukawa and K. Fukada, “Silicon-to-silicon direct bonding method”, J. Appl. Phys., 60(8), 2987-2989, 1986
    12. F. Niklaus, P. Enoksson, E. Kälvesten and G. Stemme, “Low temperature full wafer adhesive bonding”, J. Micromech. Microeng., 11(2), 100-107, 2001
    13. Y. T. Cheng, L. Lin and K. Najafi, “Localized silicon fusion and eutectic bonding for MEMS fabrication and packaging”, J. Microelectromech. Syst., 9(1), 3-8, 2000
    14. P. H Chang, G. Berman and C. C. Chen, “Transmission electron microscopy of gold-silicon interactions on the backside of wafers”, J. Appl. Phys., 63, 1473-1477, 1988
    15. A. L. Tiensuu, M. Bexell, J. -Å. Schweitz, L. Smith and S. Johnsson, “Assembling three-dimensional microstructures using gold-silicon eutectic bonding”, Sens. Actuators, 45, 227-236, 1994
    16. Y. Jin and Z. Jiaxun, “MEMS vacuum package technology and applications”, The 5th Electronics Packaging Technology Conference (EPTC 2003), Singapore, 301-306, 2003
    17. K. Minami, T. Moriuchi and M. Esashi, Technical Digest, Int. Conf. on Solid-State Sensors and Actuators (Transducers ’95), Stockholm, Sweden, 1, 240-243, 1995
    18. S. Farrens, “Metal based wafer level packaging”, http://www.suss.com/tw/service/technical-publications/wafer-level-packaging/metal-based-wafer-level-packaging.html
    19. H. Okamoto, “Al-Ge (Aluminum-Germanium)”, J. Phase Equilib., 19(1), 1998
    20. B. Vu and P. M. Zavracky, “Patterned eutectic bonding with Al/Ge thin films for microelectromechanical systems”, J. Vac. Sci. Technol. B, 14(4), 1996
    21. I. Perez-Quintana, G. Ottaviani, R. Tonini, L. Felisari, M. Garavaglia, L. Oggioni and D. Morin, “An aluminum-germanium eutectic structure for silicon wafer bonding technology”, Phys. Stat. Sol. (c) 2(10), 3706-3709, 2005
    22. W. Park, J. W. Jang, T. Clare and L. Liu, “Microstructure and mechanical properties of aluminum-germanium eutectic bonding with polysilicon metallization for microelectromechanical systems (MEMS) packaging”, Acta Mater., 64, 733-736, 2011
    23. R. Xu, H. Zhao, J. Li, R. Liu and W. K. Wang, “Microstructures of the eutectic and hypereutectic Al-Ge alloys solidified under different pressures”, Mater. Lett., 60, 783-785, 2006
    24. F. X. Zhang and W. K. Wang, “Microstructure of Ge quenched from the undercooled melt at high pressures”, Appl. Phys. Lett., 67(5), 617-619, 1995
    25. S. Sood, “Aluminum-germanium eutectic wafer bonding for wafer level packaging”, SUSS Report: Issue, 12-15, 2010
    26. W. Knaepen, S. Gaudet, C. Detavernier, R. L. Van Meirhaeghe, J. Jordan Sweet and C. Lavoie, “In situ x-ray diffraction study of metal induced crystallization of amorphous germanium”, J. Appl. Phys., 105, 083532, 2009
    27. L. Pereira, H. Águas, E. Fortunato and R. Martins, “Metal induced crystallization: gold versus aluminium”, J. Mater. Sci., 40, 1387-1391, 2005
    28. H. Okamoto and T. B. Massalski, “The Au-Si (gold-silicon) system”, Bulletin of Alloy Phase Diagrams, Metals Park, Ohio : American Society for Metals, 4(2), 1983
    29. L. H. Allen, J. R. Phillips, D. Theodore, C. B. Carter, R. Soave and J. W. Mayer, “Two-dimensional Si crystal growth during thermal annealing of Au and polycrystalline-Si bilayers”, Phys. Rev. B, 41(12), 8203-8212, 1990
    30. L. Pereira, H. Águas, R. M. Martins, E. Fortunato and R. Martins, “Polycrystalline silicon obtained by gold metal induced crystallization”, J. Non-Cryst. Solids, 338-340, 178-182, 2004
    31. Z. W. Chen, J. K. L. Lai, C. H. Shek and H. D. Chen, “Nanocrystals formation and fractal microstructural assessment in Au/Ge bilayer films upon annealing”, Appl. Surf. Sci., 250, 3-8, 2005
    32. Z. Tan and S. M. Heald, “Gold-induced germanium crystallization”, Phys. Rev. B, 46(15), 9505-9510, 1992
    33. O. Nast, T. Puzzer, L. M. Koschier, A. B. Sproul and S. R. Wenham, “Aluminum-induced crystallization of amorphous silicon on glass substrates above and below the eutectic temperature”, Appl. Phys. Lett., 73(22), 3214-3216, 1998
    34. S. Gall, M. Muske, I. Sieber, O. Nast and W. Fuhs, “Aluminum-induced crystallization of amorphous silicon”, J. Non-Cryst. Solids, 299-302, 741-745, 2002
    35. G. J. Qi, S. Zhang, T. T. Tang, J. F. Li, X. W. Sun and X. T. Zeng, “Experimental study of aluminum-induced crystallization of amorphous silicon thin films”, Surf. Coat. Technol., 198, 300-303, 2005
    36. H. Suzuki, N. Usami, A. Nomura, T. Shishido, K. Nakajima and T. Suemasu, “Impact of amorphous Ge thin layer at the amorphous Si/Al interface on Al-induced crystallization”, J. Cryst. Growth, 312, 3257-3260, 2010
    37. A. K. Srivastava, K. N. Sood, R. Kishore and H. A. Naseem, “Interfacial diffusion effect on metal induced crystallization of an amorphous silicon”, Electrochem. Solid-State Lett., 9(7), G219-G221, 2006
    38. D. Y. Kim, M. Gowtham, M. S. Shim and J. Yi, “Polycrystalline silicon thin film made by metal-induced crystallization”, Mater. Sci. Semicond. Process, 7, 433-437, 2004
    39. Y. H. Zhao, J. Y. Wang and E. J. Mittemeijer, “Interaction of amorphous Si and crystalline Al thin films during low-temperature annealing in vacuum”, Thin Solid Films, 433, 82-87, 2003
    40. E. Pihan, A. Slaouia and C. Maurice, “Growth kinetics and crystallographic properties of polysilicon thin films formed by aluminium-induced crystallization”, J. Cryst. Growth, 305, 88-98, 2007
    41. Z. M. Wang, J. Y. Wang, L. P. H. Jeurgens and E. J. Mittemeijer, ““Explosive” crystallization of amorphous germanium in Ge/Al layer systems: comparison with Si/Al layer systems”, Scripta Mater., 55, 987-990, 2006
    42. G. Raghavan and R. Rajaraman, “Role of defects in metal mediated crystallization in Al/a-Ge multilayers”, Phys. Rev. B, 68, 012104, 2003
    43. Z. Jin, G. A. Bhat, M. Yeung, H. S. Kwok and M. Wong, “Nickel induced crystallization of amorphous silicon thin films”, J. Appl. Phys., 84(1), 194-200, 1998
    44. S. W. Lee, W. C. Jeon and S. K. Joo, “Pd induced lateral crystallization of amorphous Si thin films”, Appl. Phys. Lett., 66, 1671, 1995
    45. E. A. Guliants and W. A. Anderson, “Study of dynamics and mechanism of metal-induced silicon growth”, J. Appl. Phys., 89, 4648, 2001
    46. T. J. Konno and R. Sinclair, “Metal-contact induced crystallization of semiconductors”, Mater. Sci. Eng., A179/A180, 426-432, 1994
    47. A. Hiraki, “Low temperature reactions at Si/metal interfaces; what is going on at the interfaces? ”, Surf. Sci. Rep. 3, 357-412, 1983
    48. J. C. Slater, “Atomic radii in crystals”, J. Chem. Phys., 41, 3199, 1964
    49. T. J. Konno and R. Sinclair, “Crystallization of silicon in aluminum/amorphous silicon multilayers”, Philos. Mag. B, 66, 749-765, 1992
    50. J. Y. Wang, D. He, Y. H. Zhao and E. J. Mittemeijer, “Wetting and crystallization at grain boundaries: origin of aluminum-induced crystallization of amorphous silicon”, Appl. Phys. Lett., 88, 061910, 2006
    51. F. Katsuki, K. Hanafusa and M. Yonemura, “Crystallization of amorphous germanium in an Al/a-Ge bilayer film deposited on a SiO2 substrate”, J. Appl. Phys., 89(8), 4643-4647, 2001
    52. SGTE Alloy Phase Diagrams:Ag-Si system,
    http://www.sgte.org/fact/phase_diagram.php?file=Ag-Si.jpg&dir=SGTE
    53. SGTE Alloy Phase Diagrams:Au-Si system,
    http://www.sgte.org/fact/phase_diagram.php?file=Au-Si.jpg&dir=SGTE
    54. I. Kovács, P. Harmat, A. Sulyok and G. Radnoczi, “Investigation of the kinetics of crystallisation of Al/a-Ge bilayer by electrical conductivity measurement”, Phys. Stat. Sol. (a), 161, 153, 1997
    55. G. Radnoczi, A. Robertsson, H. Hentzell, S. F. Gong and M. A. Hasan, “Al induced crystallization of a-Si”, J. Appl. Phys., 69(9), 6394, 1991
    56. G. Radnoczi, M. A. Hasan and J. E. Sundgren, “Defects in amorphous and solid phase epitaxial silicon”, Thin Solid Films, 240, 39-40, 1994
    57. M. Scholz, M. Gjukic and M. Stutzmann, “Silver-induced layer exchange for the low-temperature preparation of intrinsic polycrystalline silicon films”, Appl. Phys. Lett., 94, 012108, 2009
    58. D. He, J. Y. Wang and E. J. Mittemeijer, “Thermodynamic and kinetic criteria for layer exchange in amorphous silicon/crystalline aluminium bilayers during annealing”, Scripta Mater., 54, 559-561, 2006
    59. Z. M. Wang, J. Y. Wang, L. P. H. Jeurgens, F. Phillipp and E. J. Mittemeijer, “Origins of stress development during metal-induced crystallization and layer exchange: annealing amorphous Ge/crystalline Al bilayers”, Acta Mater., 56, 5047-5057, 2008
    60. O. Nast and S. R. Wenham, “Elucidation of the layer exchange mechanism in the formation of polycrystalline silicon by aluminum-induced crystallization”, J. Appl. Phys., 88, 124-132, 2000
    61. Y. Lereah and I. Zarudi, “The kinetics of Ge branches growth in Al : Ge crystallization“, J. Cryst. Growth, 198/199, 62-66, 1999
    62. Y. Lereah, G. Deutscher and E. Grünbaum, “Formation of dense branching morphology in the crystallization of Al-Ge amorphous thin films”, Phys. Rev. A, 44, 8316-8322, 1991
    63. B. Q. Li, B. Zheng, S. Y. Zhang and Z. Q. Wu, “Dependence of fractal formation on the thickness ratio in Al/a-Ge bilayers”, Phys. Rev., 47, 3638-3641, 1993
    64. Z. M. Wang, J. Y. Wang, L. P. H. Jeurgens and E. J. Mittemeijer, “Thermodynamics and mechanism of metal-induced crystallization in immiscible alloy systems: experiments and calculations on Al/a-Ge and Al/a-Si bilayers”, Phys. Lett. B, 77, 045424, 2008
    65. A. Zalara, J. Y. Wangb, Y. H. Zhaob, E. J. Mittemeijer and P. Panjan, “AES depth profiling of thermally treated Al/Si thin-film structures”, Vacuum, 71, 11-17, 2003
    66. J. Y. Wang, Z. M. Wang and E. J. Mittemeijer, “Mechanism of aluminum-induced layer exchange upon low-temperature annealing of amorphous Si/polycrystalline Al bilayers”, J. Appl. Phys., 102, 113523, 2007
    67. Z. M. Wang, J. Y. Wang, L. P. H. Jeurgens and E. J. Mittemeijer, “Investigation of metal-induced crystallization in amorphous Ge/crystalline Al bilayers by Augermicroanalysis and selected-area depth profiling”, Surf. Interface Anal., 40, 427-432, 2008
    68. A. Thürer, G. Rummel, TH. Zumkley, K. Freitag and H. Mehrer, “Temperature and pressure dependence of Ge diffusion in aluminium”, Phys. Stat. Sol. (a), 149, 535, 1995
    69. P. Dorner, W. Gust, A. Lodding, H. Odelius, B. Predel and U. Roll, Acta Metall., 30, 941, 1982
    70. G. Radnoczi, A. Robertsson, H. T. G. Hentzell, S. F. Gong and M. -A. Hasan, “Al induced crystallization of a-Si”, J. Appl. Phys., 69(9), 6394-6399, 1991

    QR CODE
    :::