跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李驊原
HUA-YUAN LI
論文名稱: 以隨機森林方法預測地震震度
Earthquake Intensity Prediction Using the Random Forest Method
指導教授: 黃以玫
Yi-Mei Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 179
中文關鍵詞: 地震震度預測機器學習隨機森林地震P波擷取
外文關鍵詞: earthquake magnitude prediction, machine learning, random forest, earthquake P-wave extraction
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 地震是地球上主要的自然災害之一,當強烈地震發生時,對地震的認知不足及疏於防範,往往會造成嚴重的財產損失及人員傷亡,而臺灣位於環太平洋地震帶上,地震活動頻繁,如何預防地震已經成為不可忽視的重要課題。
    本研究中嘗試對地震預警系統進行研究。研究方法為由人工智慧中機器學習領域的理論出發,使用向中央氣象局申購取得及公開下載之桃園(局部)地區地震資料,分別以隨機森林回歸與分類模型,利用取得之歷史性地震資料進行訓練及分析,擷取地震初始之加速度訊號,以對當次地震最大地動加速度(PGA)及震級進行預測,並探討不同地震地震波(P波)特徵組合及加入虛擬數據對預測結果的影響。最終目標為迅速估算當次地震震度後,系統可以決定使否需要發出地震預警警報,使收到警報的居民可以迅速逃生。

    關鍵字:地震震度預測、機器學習、隨機森林、地震P波擷取


    Earthquakes are one of the major natural disasters on earth. When strong earthquakes occur, insufficient awareness of earthquakes and neglect of precautions often result in serious property losses and casualties. Taiwan is located in the Pacific Rim Seismic Belt, and seismic activity is Frequently, how to prevent earthquakes has become an important issue that cannot be ignored.
    This study attempts to build an earthquake early warning system. using seismic acceleration data in the Taoyuan (local) area obtained from the Central Meteorological Administration and publicly downloaded based on the theory of machine learning in artificial intelligence. The specific methods used in this thesis are random forest regression and classification models. These models capture the initial acceleration signals of the earthquake to predict the maximum ground acceleration (PGA) and magnitude of the current earthquake. This study also explores the influence of choosing different combinations of earthquake seismic wave (P wave) characteristics and adding virtual data for predicting the results.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 ix 表目錄 xiv 第一章 緒論 1 1.1 研究背景與目的 1 1.2 地震預測簡介 2 1.2.1 地震現象介紹 2 1.2.2 震度分級標準 2 1.2.3 預測原理說明 3 1.3 文獻回顧 4 1.3.1 地震P波偵測方法之相關文獻 5 1.3.2 地震預警開發之相關文獻 6 第二章 機器學習基本理論 10 2.1 資料收集 10 2.2 資料前處理(Data pre-processing) 10 2.2.1 缺失值(Missing Value) 11 2.2.2 離群值(Outliers) 11 2.2.3 特徵縮放 12 2.3機器學習模型 12 2.3.1 決策樹(Decision Tree) 12 2.3.2 隨機森林(Random Forest) 16 2.3.3 深度神經網路(Deep Neural Networks,DNN) 18 2.4 訓練方式 20 2.4.1 監督式學習(Supervised Learning) 21 2.4.2 非監督式學習(Unsupervised Learning) 21 2.4.3 半監督式學習(Semisupervised Learning) 21 2.4.4 強化學習(Reinforcement Learning) 22 2.5 結果分析 22 2.5.1 過擬合(Overfitting) 23 2.5.2 特徵重要性 23 2.5.3 數據不平衡 24 2.6 超參數設定 26 2.6.1 網格搜索(Grid Search) 26 第三章 研究方法 27 3.1 地震資料選用 27 3.1.1 STA/LTA地震偵測方法 28 3.1.2 購買之地震資料一 30 3.1.3 購買之地震資料二 31 3.1.4 加入生成之虛擬地震資料 32 3.2 特徵提取及選用 34 3.2.1 特徵值A組(統計特徵)之計算公式 35 3.2.2 特徵值B組(能量特徵)之計算公式 40 3.2.3 合併後的特徵值C組 44 3.3 模型選用 44 3.3.1 隨機森林之超參數 45 3.3.2 輸入(Input)與輸出(Output) 46 3.4 模型訓練 46 3.4.1 三分留出法(Three-way Holdout Method) 47 3.4.2 交叉驗證(Cross-validation) 47 3.5 超參數調整 49 3.6 模型評估 51 3.6.1 回歸指標 52 3.6.2 分類指標 54 第四章 不同撿拾P波方式之實測設定值與影響 55 4.1 自動撿拾P波之設定值與比較 55 4.2 人工撿拾與自動撿拾P波之成效比較 58 4.2.1 人工撿拾P波之回歸型預測結果 59 4.2.2 人工撿拾P波之分類型預測結果 66 4.2.3 自動撿拾P波之回歸型預測結果 70 4.2.4 自動撿拾P波之分類型預測結果 77 4.2.5 人工拾取與自動撿拾P波之結果探討 81 第五章 基於自動撿拾P波之實測分析與討論 84 5.1 各特徵組合之成效比較 84 5.1.1 特徵值A組(統計特徵)之回歸型預測結果 85 5.1.2 特徵值A組(統計特徵)之分類型預測結果 92 5.1.3 特徵值B組(能量特徵)之回歸型預測結果 96 5.1.4 特徵值B組(能量特徵)之分類型預測結果 103 5.1.5 特徵值C組(同時採用統計與能量特徵)之回歸型預測結果 107 5.1.6 特徵值C組(同時採用統計與能量特徵)之分類型預測結果 115 5.1.7 各特徵組合之結果探討 120 5.2 加入虛擬數據之成效比較 122 5.2.1 加入虛擬數據之回歸型預測結果 123 5.2.2 加入虛擬數據之結果討論 130 5.3 將輸出取對數與取次方之成效比較 132 5.3.1 將輸出取對數之回歸型預測結果 133 5.3.2 將輸出取二次方之回歸型預測結果 141 5.3.3 將輸出取對數與二次方之結果探討 149 第六章 結論與未來展望 152 6.1 結論 152 6.2 未來展望 153 參考文獻 155

    Allen, R. M., Kanamori, H., 2003, “The potential for earthquake early warning in southern California,” Science, Vol. 300, pp. 786-789.

    交通部中央氣象署, 2019, “震度新分級”, 交通部中央氣象署新聞稿.

    王乾盈 (編), 2014, 基礎地球科學上, 新北市全華出版社, pp. 80.

    P-Alter strong motion network, https://palert.earth.sinica.edu.tw/showallpalert.php

    Wu, Y. M. and Mittal, H., 2021, “A Review on the Development of Earthquake Warning System Using Low-Cost Sensors in Taiwan” Sensor, Vol. 21, 7649.

    Allen, R. V., 1978, “Automatic earthquake recognition and timing from single traces”, Bull Seism. Soc. Am., Vol. 68, pp. 1521-1532.

    吳逸民, 陳承俊, 鍾仁光, 辛在勤, 1998, “即時加速度型地震觀測網之波相到時自動撿拾系統”, 氣象學報, 42:2卷, pp. 103-117.

    廖炳堯, 2013, “以信號互相關運用於地震定位之P波到時偵測”, 國立台灣科技大學資工所碩士學位論文.

    Zhu, W., Beroza, G. C., 2019, “ PhaseNet: a deep-neural-network-based seismic arrival-time picking method”, Geophysical Journal International, Vol. 216, pp. 261–273.

    Wu, Y. M., Shin, T. C., and Tsai, Y. B., 1998, “Quick and reliable determination of magnitude for seismic early warning,” Bull. Seismol. Soc. Am., Vol. 88, pp. 1254– 1259.

    Wu, Y. M., and Kanamori, H., 2005, “Rapid Assessment of Damage Potential of Earthquakes in Taiwan from the Beginning of P Waves,” Bulletin of the Seismological Society of America, Vol. 95, No. 3, pp. 1181–1185.

    Wu, Y. M., Yen, H., Zhao, L., Huang, B., and Liang, W., 2006, “Magnitude determination using initial P waves: A single-station approach,” Geophysical Research Letters, Vol. 33, L05306.

    Wu, Y. M. and Zhao, L., 2006, “Magnitude estimation using the first three seconds P-wave amplitude in earthquake early warning,” Geophysical Research Letters , Vol. 33(16):L16312.

    Wu, Y. M., and Kanamori, H., 2008, “Development of an Earthquake Early Warning System Using Real-Time Strong Motion Signals,” Sensor, Vol. 8, pp. 1-9.

    黃煒婷, 2009, “台灣地區Pd衰減關係式之分析及於地震預警之運用”, 國立臺灣大學地質科學學系碩士論文.

    沈哲平, 林主潔, 黃謝恭, 林沛暘, 王冠又, 2010, “類神經網路應用於強震即時警報系統之建物受震反應分析”, 第十屆中華民國結構工程研討會.

    Hsu, T. Y., Huang, S. K., Chang, Y. W., Kuo, C. H., Lin, C. M., Chang, T. M., Wen, K. L., and Loh, C. H., 2013, “Rapid on-site peak ground acceleration estimation based on support vector regression and P-wave features in Taiwan,” Soil Dynamics and Earthquake Engineering, Vol. 49, pp. 210–217.

    Hsu, T.Y., Wu, R.T., Liang, C.W., Kuo, C.H., Lin, C.M., 2020, ” Peak ground acceleration estimation using P-wave parameters and horizontal-to-vertical spectral ratios,” Terr. Atmos. Ocean. Sci., Vol. 31, No. 1, pp. 1-8.

    Hsu, T. Y., and Huang, C. W., 2021, “Onsite Early Prediction of PGA Using CNN With Multi-Scale and Multi-Domain P-Waves as Input,” Frontiers in Earth Science, Vol. 9, Article 626908.

    10程式中, 2021, “[Day 12] 決策樹 (Decision tree), ” iT邦幫忙技術文章. https://ithelp.ithome.com.tw/articles/10271143

    Breiman, L., 2001, “Random Forests,” Mach. Learn., 45(1), pp. 5–32.

    Liaw, A., and Wiener, M., 2002, “Classification and Regression by Random Forest,” R News, 2(3), pp. 18–22.

    10程式中, 2021, “[Day 14] 多棵決策樹更厲害:隨機森林 (Random forest),” iT邦幫忙技術文章.
    https://ithelp.ithome.com.tw/articles/10272586

    Krenker, A., Bešter, J. and Kos, A., 2011, “Introduction to the artificial neural networks,” Artificial Neural Networks Methodological Advances and Biomedical Applications, pp. 1-18.

    “Multi-layer Perceptron in TensorFlow,” Javatpoint.
    https://www.javatpoint.com/multi-layer-perceptron-in-tensorflow

    Hange, A., 2021, “Target Prediction using Single-layer Perceptron and Multilayer Perceptron, ” Medium.
    https://medium.com/nerd-for-tech/flux-prediction-using-single-layer-perceptron-and-multilayer-perceptron-cf82c1341c33

    魏敏如, 2020, “處理不平衡資料之方法比較”, 國立中興大學統計學研究所碩士論文.

    Tung, E., 2019, “SMOTE + ENN : 解決數據不平衡建模的採樣方法,” Medium.
    https://medium.com/%E6%95%B8%E5%AD%B8-%E4%BA%BA%E5%B7%A5%E6%99%BA%E6%85%A7%E8%88%87%E8%9F%92%E8%9B%87/smote-enn-%E8%A7%A3%E6%B1%BA%E6%95%B8%E6%93%9A%E4%B8%8D%E5%B9%B3%E8%A1%A1%E5%BB%BA%E6%A8%A1%E7%9A%84%E6%8E%A1%E6%A8%A3%E6%96%B9%E6%B3%95-cdb6324b711e

    Wikipedia contributors, 2024, “Hyperparameter optimization.,” In Wikipedia, The Free Encyclopedia. Retrieved 01:49, from
    https://en.wikipedia.org/w/index.php?title=Hyperparameter_optimization&oldid=1228626700

    花翊筑, 2020 , “中央山脈南段地震偵測與分析:利用山區臨時地震偵測網,” 國立臺灣師範大學地球科學學系碩士論文.

    Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. , 2002, “Smote: Synthetic minority over-sampling technique,” Journal of Artificial Intelligence Research, 16, 321–357.

    Mao, W., He, J., Tang, J., & Li, Y., 2018, “Predicting remaining useful life of rolling bearings based on deep feature representation and long short-term memory neural network,” Advances in Mechanical Engineering, pp. 1–18.

    羅正勛, 2022, “使用深度學習及隨機森林預測地震之分析, ” 國立中央大學機械工程學系碩士論文.

    洪晨訓, 2020, “以台灣地震開發的新地動數據庫, ” 國立中央大學土木工程學系碩士論文.

    Raschka, S., 2018, “Model evaluation, model selection, and algorithm selection in machine learning,” arXiv preprint arXiv:1811.12808.

    10程式中, 2021, “[機器學習] 交叉驗證 K-fold Cross-Validation, ” 1010Code.
    https://andy6804tw.github.io/2021/07/09/k-fold-validation/

    Fraj, M. B., 2017, “In Depth: Parameter tuning for Random Forest,” Medium.
    https://medium.com/all-things-ai/in-depth-parameter-tuning-for-random-forest-d67bb7e920d

    魏夢麗,呂秀英, 1999, “決定係數(R^2)在回歸分析中的解釋級正確使用,” 科學農業 47(11,12), pp. 341-345.
    http://ilc.hk.edu.tw/c/document_library/get_file?p_l_id=260741&folderId=261080&name=DLFE-3350.pdf

    QR CODE
    :::