| 研究生: |
施伊珊 Yi-shan Shih |
|---|---|
| 論文名稱: |
存活與長期追蹤資料之聯合模型-台灣愛滋病實例研究 Joint Model for Survival and Longitudinal Data - A Case Study on Taiwan AIDS Data |
| 指導教授: |
曾議寬
Yi-kuan Tseng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 統計研究所 Graduate Institute of Statistics |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 29 |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
十多年來,關於高效抗逆轉錄病毒治療的研究已有許多,也由諸多的數據證實使用此種療法確實可以延長發病時間與降低死亡率。本篇使用141個已發病的台灣愛滋病人資料,分為有無使用雞尾酒療法兩組,研究的目的為探討雞尾酒療法對於已發作的愛滋病人的存活時間的影響及其CD4值的變化情況。我們主要使用兩個方法:圖形法,用以初步瞭解資料所包含的訊息,得到CD4值和使用雞尾酒療法與存活機率為正相關的可能結論。聯合模型,因為長期性資料的測量時間不固定而造成測量誤差,但在重複測量的次數夠多且誤差較小的情況下,使用聯合模型所得到的估計值具有一致性、近似常態與有效性等好的性質。我們得到的結果與之前研究的結果都是一致的,使用雞尾酒療法可以使CD4值上升而達到延長生命的結果。
Over the past decade, much research have been done on Highly Active Antiretroviral Therapy (HAART), which has been proven to be able to postpone morbidity and lower mortality rate. This research collects data from 141 AIDS patients in Taiwan, which are separated into two groups, HAART and non-HAART. The research objective is to investigate the effect HAART and the CD4 cells to lifetime of AIDS patients. Research methods include graphic techniques and joint-modeling approach. Graphic techniques allow us to understand basic information from data, and the relationship between CD4 cells and mortality rate with the use of HARRT. Biased estimation usually occurs in the longitudinal data with intermittent measurement schedule. Joint modeling approach can correct this bias. Furthermore, the estimates derived by joint model have been proved to be consistent and efficient. Our findings are consistent with previous studies. The use of HARRT enables the increase of CD4 cells and extension of patients’ lifetime.
1.Becker RA, Chambers JM and Wilks AR. The New S Language: a programming environment for data analysis and graphics. Chapman & Hall, June 1988.
2.Dubin J, Muller HG, Wang JL. Event history graphs of censored survival data. Statistics in Medicine 2001;20:2951-2964.
3.Egger M, Hirschel B, Francioli P et al. Impact of new antiretroviral combination therapies in HIV infected patients in Switzerland: prospective multicentre study. Swiss HIV Cohort Study. BMJ 1997; 315(7117):1194-9
4.Fang CT, Hsu HM, Twu SJ, et al. Decreased HIV transmission after a policy of providing free access to highly active antiretroviral therapy in Taiwan. J Infect Dis. 2004; 190(5):879-85.
5.Gulick RM, Meibohm A, Havlir D, et al. Six-year follow-up of HIV-1-infected adults in a clinical trial of antiretroviral therapy with indinavir, zidovudine and lamivudine. AIDS 2003; 17:2345-9.
6.Henderson , R., Diggle, P. & Dobson, A. (2000). Joint modelling of longitudinal measurements and event time data. Biostatistics 4, 465–480.
7.Hsieh F, Tseng YK, Wang JL. Joint Modeling of Survival Time and Longitudinal Data: Likelihood Approach Revisit. Biometrics, 62, 1037-1043, 2006.
8.Kaufmann GR, Perrin L, Pantaleo G, et al. CD4 T-lymphocyte recovery in individuals with advanced HIV-1 infection receiving potent antiretroviral therapy for 4 years: the Swiss HIV Cohort Study. Arch Intern Med. 2003; 163:2187-95.
9.Lucas CM, Chaisson RE, Moore RD. Highly active antiretroviral therapy in a large urban clinic: risk factors for virologic failure and adverse drug reactions. Ann Intern Med 1999; 131:81-87.
10.Prentice RL. Covariate measurement errors and parameter estimation in a failure time regression model. Biometrika, 69, 331-342, 1982.
11.Pawitan Y and Self S. Modeling disease marker process in AIDS. Journal of the American Statistical Association, Vol. 88, No. 423. (Sep., 1993), 719-726
12.Palella FJ, Delaney KM, Moorman AC, et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. N Engl J Med. 1998; 338(13):853-60.
13.Tsiatis AA, DeGruttola V & Wulfsohn MS (1995). Modeling the relationship of survival to longitudinal data measured with error. Applications to survival and CD4 counts in patients with AIDS. Journal of the American Statistical Association 90, 27-37.
14.Tsiatis AA & Davidian M (2001). A semiparametric estimator for the proportional hazards model with longitudinal covariates measured with error. Biometrika 88, 447–458.
15.Tsiatis AA and Davidian M. Joint modeling of longitudinal and time-to-event data: an overview. Statistica Sinica 2004; 14:809-34.
16.Tseng YK, Hsieh F and Wang JL. Joint modeling of accelerated failure time and longitudinal data. Biometrika 2005; 92:587-603.
17.Wulfsohn MS, Tsiatis AA. A Joint Model for Survival and Longitudinal Data Measured with Error. Biometrics, Vol. 53, No. 1. (Mar., 1997), 330-339.
18.Wang Y & Taylor JMG (2001). Jointly modeling longitudinal and event time data with application to acquired immunodeficiency syndrome. J. Am. Statist. Assoc. 96, 895–905.
19.Yu M, Law NJ, Taylor JMG & Sandler HM (2004). Joint longitudinal-survival-cure models and their application to prostate cancer. Statist. Sinica 14, 835–62.
20.Zeng D, Cai J. Asymptotic results for maximum likelihood estimators in joint analysis of repeated measurements and survival time. The Annals of Statistics 2005; 33(5):2132-63.