跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蔡承佑
TSAI CHENG-YU
論文名稱: Tensor product decomposition for finite dimensional sln(C)-modules.
指導教授: 彭勇寧
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 30
中文關鍵詞: 李代數
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 考慮兩個有限維不可分解的sl(n)-module 之張量積。Weyl's Theorem
    保證我們可以將該張量積拆解成很多不可分解的子結構之直和。其中,我們將發現,
    直和中各項的係數其實就是有名的Littlewood-Richardson coefficients。


    Consider the tensor product of two finite dimensional irreducible sl(n)-modules. By
    Weyl's Theorem, we can decompose the tensor product into a direct sum of irreducible
    sl(n)-submodules. We will prove that the coefficients in the decomposition are actually the
    well-known Littlewood-Richardson coefficients.

    摘要i Abstract ii Contents iii 1 Introduction 1 2 Background knowledge 2 2.1 De nitions and theorems related to representation of Lie algebra . . . . . . 2 2.2 De nitions and theorems related to symmetric group . . . . . . . . . . . . 7 3 Discussions for the sl2 cases. 10 3.1 Decomposing the tensor product of two standard sl2-modules. . . . . . . . 10 3.2 The Clebsch-Gordan formula for sl2 . . . . . . . . . . . . . . . . . . . . . . 12 4 Main results 13 4.1 Clebsch-Gordan formula for sln . . . . . . . . . . . . . . . . . . . . . . . . 13 4.2 Reformulation in terms of symmetric functions . . . . . . . . . . . . . . . . 13 4.3 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.4 Littlewood-Richardson Rule . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Bibliography 25

    [GW] Roe Goodman  Nolan R. Wallach
    Symmetry, Representations, and Invariants,
    Springer-Verlag, New York, 2009.

    [H] Humphreys, J. E.
    Introduction to Lie Algebras and Representation Theory,
    Springer-Verlag, New York, 1972.

    [S] Sagan, B. E.
    The Symmetric Group, Representations, Combinatorial Algorithms, and Symmet-
    ric Functions,
    Springer-Verlag, New York, 2003.

    QR CODE
    :::