| 研究生: |
陳宗佑 Chung-Yu Chen |
|---|---|
| 論文名稱: |
以離散元素法分析苗栗縣南庄鄉鹿湖山區之土石崩塌行為及內部性質之探討 |
| 指導教授: |
鍾雲吉
Yun-Chi Chung |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 土石崩塌行為 、離散元素模擬 、摩擦係數 、內部物理性質 |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以離散元素法(Discrete Element Method, DEM)模擬苗栗縣南庄鄉鹿湖山區土石之崩塌行為,此次山崩事件排除地震與降雨兩大誘因,為乾顆粒的崩落。由中興工程顧問社提供的地形資料作為比對依據,經由驗證本研究離散元素模型的合理性後,並進一步研究顆粒體崩塌運動過程中的傳輸性質與內部物理性質,包括平移速度向量、擾動速度分佈、粒子溫度、配位數、粒子體積佔有率及von Mises應力。顆粒間摩擦係數較小時,碰撞機制主控能量損失,沉積情況相較於實際沉積形貌較為細長,顆粒間摩擦係數增加時,摩擦機制主控能量損失,沉積情況較為飽滿。因地勢崎嶇形成的自然阻礙物,使得顆粒體在崩塌的過程中碰撞機制仍佔一定的影響。經由參數分析,在μ_pp=0.0875與μ_pw=0.70的條件下,堆積區的形貌最為接近實際沉積形貌。三個方向的平移與旋轉擾動速度皆呈現馬克士威爾分佈,而崩塌後24sec的y方向與z方向平移擾動速度分佈峰值分別呈現左移與右移的現象,原因皆是此瞬間部分顆粒體已經開始沉積。粒子溫度分佈、配位數分佈、粒子體積佔有率及von Mises應力分佈皆隨著顆粒體崩塌的過程有所變化,從坡道上往下游崩塌,滑落到下游因地形阻礙而逐漸沉積,直至最後所有顆粒體堆積完成,配位數分佈、粒子體積佔有率與von Mises應力呈現正相關分佈。
This study analyzes landslide of Luhu mountain located in Nanzhuang Township, Miaoli County, and explores the landslide behavior and the sliding mechanism. This study proposes a discrete element model to simulate the landslide of Luhu mountain. The topographic data, provided by Sinotech engineering consultants, Ltd., are used as the basis for comparison. After the proposed DEM model is validated, we investigate internal physical properties, including translational velocity vector, fluctuation velocity distributions, granular temperatures, coordination number, solid fraction and von mises stress. As inter-particle friction coefficient decreases, the collision mechanism dominates the energy loss and the final deposition is much slender. In contrast, as inter-particle friction coefficient increases, the friction mechanism dominates the energy loss and the final deposition is wider. Due to the natural obstacles in the rugged terrain, collision mechanism plays an important role in the dissipation of system energy. According to parametric study, the final deposition is the closest to the actual sedimentary topography when μ_pp=0.0875 and μ_pw=0.70. The translational and rotational fluctuation velocity distributions in all three directions exhibit Maxwellian distributions. However, the peaks of the y-direction and z-direction translational fluctuation velocities at 24sec respectively show left-shifted and right-shifted phenomena, attributed to the fact that some of the particles have deposited by this moment. Internal physical properties change during landslide process, such as granular temperatures, coordination number, solid fraction and von mises stress. Coordination number, solid fraction and von mises stress show a positive correlation.
[1]P.A. Cundall, O.D. L.Strack, “A discrete numerical model for granular assemblies”, Géotechnique, 29, 47-65, 1979.
[2]Chung, Y.C., Liao, H.H., Hsiau, S.S. “Convection behaviour of non-spherical particles in a vibrating bed: discrete element modelling and experimental validation”. Powder Technology 237, 53-66, 2013.
[3]Naeini, S.E., Spelt, J.K. “Two-dimensional discrete element modeling of a spherical steel media in a vibrating bed”. Powder Technology 195, 83-90, 2009.
[4]Majid, M. , Walzel, P. “Convection and segregation in vertically vibrated granular beds”. Powder Technology 192, 311-317,2009.
[5]Chung, Y.C., Ooi, J.Y. “Benchmark tests for verifying discrete element modelling codes at particle impact level”. Granular Matter 13, 643-656,2011.
[6]Charles S. Campbell, Paul W. Cleary, Mark Hopkins, “Large-scale landslide simulations: Global deformation, velocities and basal friction”, Journal of geophysical research, 100, 8267-8283, 1995.
[7]T R Davies, M J McSaveney, K A Hodgson, “A fragmentation–spreading model for long-runout rock avalanches”, Can. J. Geotechnique, 36, 1096-1110, 1999
[8]O Hungr, Morgenstern N R, “Experiments on the flow behavior of granular materials at high velocity in an open channel”, Geotechnique, 34, 405-413, 1984
[9]O Hungr, Morgenstern N R, “High velocity ring shear tests on sand”, Geotechnique, 34, 415-421, 1984
[10]Kent P E, “The transport mechanism in catastrophic rock falls”, Journal of Geology, 74, 79-83, 1966
[11]Fahnestock R K, “Little Tahoma peak rockfalls and avalanches, Mount Rainier, Washington, U.S.A”, Rockslides and Avalanches, Elsevier, Amsterdam, The Netherlands, 181-196, 1978
[12]Susan H Cannon, William Z. Savage, “A Mass-Change Model for the Estimation of Debris-Flow Runout”, Journal of Geology, 96, 221-227, 1988
[13]Voight B, Janda R J, Glicken H, Douglass P M, “Nature and mechanics of the Mount St Helens rockslide-avalanche of May”, Geotechnique, 33, 243-273, 1983
[14]W Brain Dade, Herbert E. Huppert, “Long-runout rockfalls”, Geology, 26, 803-806, 1998
[15]Chia-Ming Lo, Ching-Fang Lee, Hsien-Ter Chou, Ming-Lang Lin, “Landslide at Su-Hua Highway 115.9k triggered by Typhoon Megi in Taiwan”, Landslides, 11, 293-304, 2014
[16]Cheng-Han Lin, Ming-Lang Lin, “Evolution of the large landslide induced by Typhoon Morakot: A case study in the Butangbunasi River, southern Taiwan using the discrete element method”, Engineering Geology, 197, 172-187, 2015
[17]Chao-Lung Tang, Jyr-Ching Hu, Ming-Lang Lin, Jacques Angelier, Chia-Yu Lu, Yu-Chang Chan, Hao-Tsu Chu, “The Tsaoling landslide triggered by the Chi-Chi earthquake, Taiwan: Insights from a discrete element simulation”, Engineering Geology, 106, 1-19, 2009
[18]Chia-Ming Lo, Zheng-Yi Feng, Kuang-Tsung Chang, “Landslide hazard zoning based on numerical simulation and hazard assessment”, Geomatics, Natural Hazards and Risk, 9, 368-388, 2018
[19]Olivier Lateltin, Christoph Haemmig, Hugo Raetzo, Christophe Bonnard, “Landslide risk management in Switzerland”, Landslides, 2, 313-320, 2005
[20]Chia-Ming Lo, Wei-Kai Huang, Ming-Lang Lin, “Earthquake-induced deep-seated landslide and landscape evolution process at Hungtsaiping, Nantou County, Taiwan”, Environ Earth Sci 75:645, 2016
[21]Chia-Ming Lo, Hung-Hui Li, Chien-Chung Ke, “Kinematic model of a translational slide in the Cidu section of the Formosan Freeway”, Landslides, 13, 141-151, 2016
[22]Chiao-Yin Lu, Chao-Lung Tang, Yu-Chang Chan, Jyr-Ching Hu, Chung-Chi Chi, “Forecasting landslide hazard by the 3D discrete element method: A case study of the unstable slope in the Lushan hot spring district, central Taiwan”, Engineering Geology, 183, 14-30, 2014
[23]Chao-Lung Tang, Jyr-Ching Hu, Chia-Ming Lo, Ming-Lang Lin, “The Catastrophic 1999 Tsaoling and 2009 Hsiaoling Landslides: Preliminary Study from 3-D Distinct Element Modeling”, Sino-Geotechnics, 122, 143-152, 2009.
[24]蒲淵明,「地滑/岩崩形成堰塞湖之運動模擬及參數探討」,國立交通大學,碩士論文,民國101。
[25]Gianvito Scaringi, Xuanmei Fan, Qiang Xu, Chun Liu, Chaojun Ouyang, Guillem Domènech, Fan Yang, Lanxin Dai, “Some considerations on the use of numerical methods to simulate past landslides and possible new failures: the case of the recent Xinmo landslide (Sichuan, China)”, Landslide, 15, 1359-1375, 2018
[26]T R Davies, M J Mcsaveney, K A Hodgson, “A fragmentation-spreading model for long-runout rock avalanches”, Can. J. Geotech, 36, 1096-1110, 1999.
[27]Yoichi Okura, Hikaru Kitahara, Toshiaki Sammori, Akiko Kawanami, “The effects of rockfall volume on runout distance”, Engineering Geology, 58, 109-124, 2000.
[28]Scheidegger, A. E., “On the prediction of the reach and velocity of catastrophic landslides”, Rock Mechanics, Vol. 5, pp.231-236, 1973.