| 研究生: |
吳帝華 Di-hua Wu |
|---|---|
| 論文名稱: |
對動態社群網路的階層式分群與視覺化設計 The Design of Hierarchical Clustering and Visualization Methodology for the Dynamic Social Network |
| 指導教授: |
蔡孟峰
Meng-Feng Tsai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 資訊工程學系 Department of Computer Science & Information Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 社群網路分析 、動態社群網路 、遞增式分群 、變化流模型 |
| 外文關鍵詞: | Social network analysis, Dynamic social network, Incremental clustering, Change stream model |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在社群網路分析的領域裡,將社群網路中個體的互動關係進行分群一直是個重要的議題。以往的研究中,大部分的分群方法都是在靜態或是涵蓋社群網路整體時間的概念下,而實際的社群網路是會經過時間而演化的,社群網路中個體的互動有可能在某段時間發生變化,進而影響社群網路中的社群結構,對於這樣演化的社群網路進行分群的話,效率便成為一個重要的問題。
本研究共分兩個部分,第一部分為設計一個遞增分群(incremental clustering)方法,來解決分群效率的問題。將社群網路從傳統的快照圖模型(snapshot model)轉換成改變流模型(change stream model),並結合平衡式階層社群建立(balanced hierarchy construction)演算法,來提供一個遞增版本的平衡式階層社群建立演算法。在第二部分,對應於社群網路演化中分群所產生的結果,提供一個視覺化的設計,連結長條圖,這個視覺化方法是以社群為視點,來了解在暫時的時間下,不同階層時的社群關係。
在實驗中,本研究透過分析Enron電子郵件,顯示出相對於原始的靜態分群方法,本研究提供的方法明顯的讓分群的效率有所改進。對於演化過程中暫時的社群結構,透過視覺化方法也可實際觀察出正確的分群結果,而利用比對於不同時間的結果,也能觀察出社群的變化。
Detect the communities in social network by interactions of entities which is an important issue in social network analysis. Mostly, clustering algorithms are under static point or entire time of social networks concept. Real social networks usually evolve continuously with the passage of time. Interactions of entities might change at some point in time and make the community structures also change. Because of this situation, the problem of efficiently clustering appear.
The research is composed of two parts: first of all, this paper present a design of incremental clustering to address the problem of efficiency. Transform the social network from traditional snapshot graph model to change stream model, and combine with balanced community hierarchy construction. Second, the design of visualization, connective bar chart, to satisfy the results created in dynamic social networks. The visualization is based on the view of communities and can understand the temporal view of the relationship among communities in different level.
Experiment with the analysis of Enron e-mail, the results represent that our method can improve the efficiency apparently compare with the static method. The community structures also present a correct results and the difference between two periods by our design of visualization.
[1] Achtert E., Böhm C., Kröger P., DeLi-Clu: boosting robustness, completeness, usability, and efficiency of hierarchical clustering by a closest pair ranking. PAKDD'06 Proceedings of the 10th Pacific-Asia conference on Advances in Knowledge Discovery and Data Mining, 2006, 119-128
[2] Ankerst M., Breunig M. M., Kriegel H. P., Sander J., OPTICS: ordering points to identify the clustering structure. SIGMOD '99 Proceedings of the 1999 ACM SIGMOD international conference on Management of data, 1999, 49-60
[3] Arthur D., Vassilvitskii S., k-means++: the advantages of careful seeding. In Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, 2007, 1027-1035
[4] Bagheri A., Razzazi M., Drawing Free Trees Inside Simple Polygons Using Polygon Skeleton. COMPUTING AND INFORMATICS 23, 2004, 239-254
[5] Chakrabarti D., Kumar R., Tomkins A., Evolutionary clustering. Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, 2006, 554-560
[6] Chi Y., Song X., Zhou D., Hino K., Tseng B. L., Evolutionary spectral clustering by incorporating temporal smoothness. Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining, 2007, 153-162
[7] Defays D., An efficient algorithm for a complete link method. The Computer Journal 20, 1977, 364-366
[8] Dempster A. P., Laird N. M., Rubin D. B., Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological) 39, 1977, 1-38
[9] Diesner J., Frantz T. L., Carley K. M., Communication Networks from the Enron Email Corpus "It's Always About the People. Enron is no Different". Computational & Mathematical Organization Theory 11, 2005, 201-228
[10] Duan D., Li Y., Li R., Lu Z., Incremental K-clique clustering in dynamic social networks. Artificial Intelligence Review 38, 2012, 129-147
[11] Dunne C., Shneiderman B., Motif Simplification: Improving Network Visualization Readability with Fan and Parallel Glyphs. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 2013, 3247-3256
[12] Ester M., Kriegel H. P., Sander J., Xu X., A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In Second International Conference on Knowledge Discovery and Data Mining, 1996, 226-231
[13] Girvan M., Newman M. E. J. , Community Structure in Social and Biological Networks. Proceedings of the National Academy of Sciences of the United States of America 99, 2002, 7821-7826
[14] Goble G., The History of Social Networking. http://www.digitaltrends.com/features/the-history-of-social-networking/#!Q1FqY
[15] Görke R., Hartmann T., Wagner D., Dynamic Graph Clustering Using Minimum-Cut Trees. Algorithms and Data Structures 5664, 2009, 339-350
[16] Hamerly G., Elkan C., Alternatives to the k-means algorithm that find better clusterings. International Conference on Information and Knowledge Management, 2003, 578
[17] Herman I., Merlancon G., Marchall M. S., Graph Visualization and Navigation in Information Visualization: A Survey. IEEE Transactions on Visualization and Computer Graphics 6, 2000, 24-43
[18] http://www.classmates.com/
[19] http://www.edrm.net/
[20] https://www.cs.cmu.edu/~enron/
[21] Jia Y., Garland M., Hart J. C., Social Network Clustering and Visualization using Hierarchical Edge Bundles. Computer Graphics Forum 30, 2011, 2314-2327
[22] Jia Y., Hart J. C., Drawing Trees: How Many Circles to Use? 2009
[23] Murtagh F., Complexities of hierarchic clustering algorithms: state of the art, Computational Statistics Quarterly 1, 1984, 101-113
[24] Ning H., Xu W., Chi Y., Gong Y., Huang T. S., Incremental spectral clustering by efficiently updating the eigen-system. Pattern Recognition 43, 2010, 113-127
[25] Palla G., Derényi I., Farkas I., Vicsek T., Uncovering the overlapping community structure of complex networks in nature and society. Nature 435, 2005, 814-818
[26] Park H. S., Jun C. H., A simple and fast algorithm for K-medoids clustering. Expert Systems with Applications 36, 2009, 3336-3341
[27] Pérez-Suárez A., Martínez-Trinidad J. F., Carrasco-Ochoa J. A., Medina-Pagola J. E., An algorithm based on density and compactness for dynamic overlapping clustering. Pattern Recognition 46, 2013, 3040-3055
[28] Sibson R., SLINK: An optimally efficient algorithm for the single-link cluster method. The Computer Journal 16, 1973, 30-34
[29] Social Media Update 2013, http://www.pewinternet.org/2013/12/30/social-media-update-2013/
[30] Sun J., Faloutsos C., Papadimitriou S., Yu P. S., GraphScope: parameter-free mining of large time-evolving graphs. Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining, 2007, 687-696
[31] Tantipathananandh C., Berger-Wolf T., Kempe D., A framework for community identification in dynamic social networks. Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining, 2007, 717-726