跳到主要內容

簡易檢索 / 詳目顯示

研究生: 尹致超
Jhih-Chao Yin
論文名稱: 鑽石應用在功率及頻率半導體元件的發展與挑戰
The Development and Challenges of Diamond Applied to Power and Frequency Semiconductor Devices
指導教授: 李雄
Shyong Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 99
中文關鍵詞: 鑽石功率半導體元件頻率半導體元件P 型鑽石半導體
外文關鍵詞: diamond, power device, frequency device, P-type diamond semiconductor
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要進行鑽石半導體元件之文獻整理。鑽石擁有寬能隙、極 高的崩潰電場、載子遷移率和優良的熱性質,是作為功率和頻率元件 最理想的半導體材料。鑽石功率和頻率半導體元件主要以肖特基二極 體、肖特基 p-n 二極體、肖特基 p-i-n 二極體、硼摻雜通道型場效電晶 體、氫端鍵結表面通道型場效電晶體,以及 P 溝道型接面場效電晶體 為主。鑽石肖特基二極體、硼摻雜通道型場效電晶體和 P 溝道型接面 場效電晶體操作溫度可達 500°C。氫端鍵結表面通道型電晶體具有良好 的截止頻率與最大震盪頻率。然而鑽石半導體元件的發展一直受到各 種瓶頸,其中最主要的問題在於鑽石晶圓尺寸過小、晶體品質不佳以 及摻雜製程不易。目前只有 P 型鑽石半導體元件可以在室溫下運作, 尤其是以氫端鍵結表面通道型電晶體為大宗。


    This thesis present a survey of diamond semiconductor devices. Diamond is considered to be the ultimate semiconductor for power and frequency devices due to its wide band-gap, high breakdown electric field, high carrier mobility, and superior thermal properties. Diamond power and frequency devices mainly focus on schottky diode, schottky p-n diode, schottky p-i-n diode, boron-doped channel FET, hydrogen-terminated surface channel FET and P channel JFET. Furthermore, the operating temperature of schottky diamond diode, boron-doped channel diamond FET and P channel diamond JFET can reach 500 °C , and hydrogen-terminated surface channel FET has excellent cutoff frequency and maximum oscillation frequency. However, the success of diamond-based semiconductor devices has been difficult due to critical challenges involved with small wafer size, poor quality of crystal and difficult on doping. So far, only P-type diamond semiconductor devices can be used in room temperature, especially hydrogen-terminated surface channel FETs.

    目錄 摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 vii 表目錄 xi 第一章、緒論 1 第二章、文獻蒐集方法 6 第三章、結果 9 3.1 鑽石 9 3.1.1 晶體結構及性質 9 3.1.2 散熱機制 10 3.1.3 種類 10 3.1.4 單晶與多晶 11 3.2 合成鑽石技術 12 3.2.1 高溫高壓法 12 3.2.2 化學氣相沉積法 13 3.2.3 拼花成長方法 17 3.3 摻雜 18 3.4 反應離子蝕刻 20 3.5 鑽石二極體 21 3.5.1 鑽石肖特基二極體 22 3.5.2 鑽石肖特基p-n二極體 23 3.5.3 鑽石肖特基p-i-n二極體 24 3.6 鑽石場效電晶體 25 3.6.1 硼摻雜通道型MESFET 26 3.6.2 硼摻雜通道型MISFET 27 3.6.3 氫端鍵結表面通道型MESFET 29 3.6.4 氫端鍵結表面通道型MISFET 30 3.6.5 接面場效電晶體 31 3.6.6 單晶鑽石與多晶鑽石場效電晶體之比較 33 3.7 功率和頻率半導體元件之性能評估 34 第四章、討論 64 4.1 薄膜製程分析 64 4.2 摻雜製程分析 65 4.3 蝕刻製程分析 65 4.4 二極體分析 66 4.5 電晶體分析 67 第五章、總結 69 參考文獻 71

    [1] C. E. Nebel, “From Gemstone to Semiconductor”, Nature Materials, vol.2, pp.431-432, 2003
    [2] B. J. Baliga, “Power Semiconductor Device Figure of Merit for High-Frequency Applications”, IEEE Electron Device Letters, vol.10, pp.455-457, 1989
    [3] S. T. Lee, Y. Lifshitz, “The Road to Diamond Wafers”, Nature, vol.424, pp.500-501, 2003
    [4] Shinichi Shikata, “Single Crystal Diamond Wafers for High Power Electronics”, Diamond & Related Materials, vol.65, pp.168–175, 2016
    [5] P. Calvani, A. Corsaro, F. Sinisi, M. C. Rossi, G. Conte, E. Giovine, W. Ciccognani, E. Limiti, “Diamond MESFET Technology Development for Microwave Integrated Circuits”, European Microwave Integrated Circuits Conference , pp.149-151, 2009
    [6] V. B. Efimov, L. P. Mezhov-Deglin, “Phonon Scattering in Diamond Films”, Physica B, vol.263-264, pp.745-748, 1999
    [7] V. Goyal, D. Kotchetkov, S. Subrina, M. Rahman, A. A. Balandin, “Thermal Conduction Through Diamond-Silicon Heterostructures”, IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, pp.1-6, 2010
    [8] M. Kasu, ”Diamond Epitaxy: Basics and Applications”, Crystal Growth and Characterization of Materials, vol.62, pp. 317–328, 2016
    [9] R. M. Hazen, “The Diamond Makers”, Cambridge university, pp.61~77, 1991
    71
    [10] H. T. Hall, “Diamond Synthesis”, US2947608, 1960
    [11] H. Sumiya, S. Satoh, “High-Pressure Synthesis of High-Purity Diamond
    Crystal”, Diamond & Related Materials 5, pp.1359-1365, 1996
    [12] B.V. Spitsyn, L.L. Bouilov and B.V. Derjaguin, “Vapor Growth of Diamond on Diamond and Other Surfaces”, Journal of Crystal Growth, vol.52,
    pp.219-226, 1981
    [13] P. W. May, “Diamond Thin Films: A 21st-Century Material”, Physical and
    Engineering Sciences, vol.358, pp. 473-495, 2000
    [14] X. Jiang , C. L. Jia, “Direct Local Epitaxy of Diamond on Si(100) and
    Surface-Roughening-Induced Crystal Misorientation”, Physical Review
    Letters, vol.84, pp. 3658-3661, 2000
    [15] H. Toyota, S. Nomura, Y. Takahashi, S. Mukasa, “Submerged Synthesis of
    Diamond in Liquid Alcohol Plasma”, Diamond & Related Materials, vol.17,
    pp.1902–1904, 2008
    [16] Y. Takahashi, H. Toyota, S. Nomura, S. Mukasa, T. Inoue, “A Comparison
    of Diamond Growth Rate Using In-Liquid and Conventional Plasma Chemical Vapor Deposition Methods”, Journal of Applied Physics, vol.105, pp.1-4, 2009
    [17] Y. Harada, R. Hishinuma, C. Terashima, H. Uetsuka, K. Nakata, T. Kondo, M. Yuasa, A. Fujishima, “Rapid Growth of Diamond and Its Morphology By In-Liquid Plasma CVD”, Diamond & Related Materials, vol.63, pp.12-16, 2016
    [18] H. Yamada, A. Chayahara, Y. Mokuno, N. Tsubouchi, S. Shikata, N. Fujimori, “Developments of Elemental Technologies to Produce Inch-Size Single-Crystal Diamond Wafers”, Diamond & Related Materials, vol.20,
    72
    pp.616–619, 2011
    [19] Y. Mokuno, A. Chayahara, Y. Soda, H. Yamada, Y. Horino, N. Fujimori,
    “High Rate Homoepitaxial Growth of Diamond by Microwave Plasma CVD with Nitrogen Addition”, Diamond & Related Materials, vol.15, pp.455–459, 2006
    [20] M. W. Geis, “Device Quality Diamond Substrates”, Diamond and Related Materials, vol.1, pp.684-687, 1992
    [21] G. Janssen, L.J. Giling, ““Mosaic” Growth of Diamond”, Diamond and Related Materials, vol.4, pp.1025-1031, 1995
    [22] Y. Mokuno, A. Chayahara, H. Yamada, “Synthesis of Large Single Crystal Diamond Plates by High Rate Homoepitaxial Growth Using Microwave Plasma CVD and Lift-off Process”, Diamond & Related Materials, vol.17, pp.415–418, 2008
    [23] Y. Mokuno, A. Chayahara, H. Yamada, N. Tsubouchi, “Improving Purity and Size of Single-Crystal Diamond Plates Produced by High-Rate CVD Growth and Lift-off Process Using Ion Implantation”, Diamond & Related Materials, vol.18, pp.1258–1261, 2009
    [24] R. A. Khmelnitskiy, “Prospects for The Synthesis of Large Single-Crystal Diamonds”, Physics-Uspekhi, vol.58, pp.134-149, 2015
    [25] H. Yamada, A. Chayahara, Y. Mokuno, H. Umezawa, S. Shikata, N. Fujimori, “Fabrication of 1 Inch Mosaic Crystal Diamond Wafers”, Applied Physics Express, vol.3, pp.051301, 2010
    [26] H. Yamada, A. Chayahara, Y. Mokuno, N. Tsubouchi, S. Shikata, “Uniform Growth and Repeatable Fabrication of Inch-Sized Wafers of A Single-Crystal Diamond”, Diamond & Related Materials, vol.33, pp.27–31,
    73
    2013
    [27] H. Yamada, A. Chayahara, Y. Mokuno, Y. Kato, S. Shikata, "A 2-In. Mosaic
    Wafer Made of A Single-Crystal Diamond", Applied Physics Letters, vol.104,
    pp.1-4, 2014
    [28] J. W. Glesener, “Hole Capture in Boron-Doped Diamond”, Applied Physics
    Letters, vol.64, pp.217-219 , 1994
    [29] E. Gheeraert, S. Koizumi, T. Teraji, H. Kanda, M. Nesladek, "Electronic
    States of Boron and Phosphorus in Diamond", Physica Status Solidi (a),
    vol.174, pp.39-51, 1999
    [30] B. B. Li, M. C. Tosin, A. C. Peterlevitz, V. Baranauskas,"Measurement of
    The Substitutional Nitrogen Activation Energy in Diamond Films", Applied
    Physics Letters, vol.73, pp.812-814, 1998
    [31] I. Bello, M. K. Fung, W. J. Zhang, K. H. Lai, Y. M. Wang, Z. F. Zhou, R.
    K.W. Yu, C. S. Lee, S. T. Lee, "Effects at Reactive Ion Etching of CVD
    Diamond", Thin Solid Films, vol.368, pp.222-226, 2000
    [32] D. Liu, L. Gou, J. Xu, K. Gao, X. Kang, “Investigations on Etching
    Resistance of Undoped and Boron Doped Polycrystalline Diamond Films by
    Oxygen Plasma Etching”, Vacuum, vol.128, pp.80-84, 2016
    [33] G. F. Ding, H. P. Mao, Y. L. Cai, Y. H. Zhang, X. Yao, X. L. Zhao, “Micromachining of CVD Diamond by RIE for MEMS Applications”,
    Diamond & Related Materials, vol.14, pp.1543 – 1548, 2005
    [34] O. Dorsch, M. Werner, E. Obermeier, “Dry Etching of Undoped and Boron Doped Polycrystalline Diamond Films”, Diamond & Related Materials,
    vol.4, pp. 456-459, 1995
    [35] H. Shiomi, "Reactive Ion Etching of Diamond in O2 and CF4 Plasma, and
    74
    Fabrication of Porous Diamond for Field Emitter Cathodes", Japanese
    Journal of Applied Physics, vol.36, p.2207-2004, 1997
    [36] Y. Andoa, Y. Nishibayashia, K. Kobashia, T. Hiraob, K. Ourab, “Smooth
    and High-Rate Reactive Ion Etching of Diamond”, Diamond and Related
    Materials, vol.11, pp.824–827, 2002
    [37] T. Izak, A. Kromka, O. Babchenko, M. Ledinsky, K. Hruska, E. Verveniotis,
    “Comparative Study on Dry Etching of Polycrystalline Diamond Thin
    Films”, Vacuum, vol.86, pp.799-802, 2012
    [38] Z. Cao, M. W. Varney, D. M. Aslam, “Optimization of Reactive Ion Etching
    of Polycrystalline Diamond for MEMS Applications”, Journal of
    Microelectromechanical Systems, vol.24, pp.1681-1683, 2015
    [39] M. W. Geis, D. D. Rathman, D. J. Ehrlich, R. A. Murphy, W. T. Lindley, “High-Temperature Point-Contact Transistors and Schottky Diodes Formed on Synthetic Boron-Doped Diamond” , IEEE Electron Device Letters, vol.8,
    pp.341-343,1981
    [40] K. Okano, H. Kiyota, T. Iwasaki, Y. Nakamura, Y.Akiba. , T. Kurosu, M.
    Iida,T. Nakamura, “Fabrication of A Diamond p-n Junction Diode Using The Chemical Vapour Deposition Technique”, Solid-State Electronics, vol.34, pp.139-141, 1991
    [41] H. Shiomi, Y. Nishibayashi, N. Fujimori ,” High-Voltage Schottky Diodes on Boron-Doped Diamond Epitaxial Films”, Japanese Journal of Applied Physics, vol.29, 1990
    [42] W. Ebert, “High current p/p-Diamond Schottky Diode”, IEEE Electron Device Letters, vol.15, pp. 289–291, 1994
    [43] Y. Gurbuz, W. P. Kang, J. L. Davidson, D. V. Kerns, Q. Zhou, “PECVD 75
    Diamond-Based High Performance Power Diodes”, IEEE Transactions On
    Power Electronics, vol.20, pp.1-9, 2005
    [44] E. Kohn, A. Denisenko, “Concepts for Diamond Electronics”, Thin Solid
    Films, vol.515, pp.4434-4439, 2006
    [45] J. Isberg, J. Hammersberg, E. Johansson, T. Wikstro ̈m, D. J. Twitchen, A. J.
    Whitehead, S. E. Coe, G. A. Scarsbrook, “High Carrier Mobility in Single-Crystal Plasma-Deposited Diamond”, Science, vol. 297, pp.1670-1672, 2002
    [46] A. Vescan, I. Daumiller, P. Gluche, W. Ebert, E. Kohn, “Very High Temperature Operation of Diamond Schottky Diode”, IEEE Electron Device Letters, vol.18, pp.556-558, 1997
    [47] M. Brezeanu, “Diamond Schottky Structures”, International Semiconductor Conference, vol.1, pp.15-25, 2009
    [48] M. Brezeanu, S. J. Rashid, T. Butler, N. L. Rupeswghe, F. Udrea, K. Okano, G. A. J. Amaratunga, D. J. Twitchen, A. Tajani, C. Wort, A. Garraway, L. Coubeck, P. Talyor, D. G. Hasko, “High Voltage Schottky Barrier Diodes IN Synthetic Single Crystal Diamond”, International Semiconductor Conference, vol.2, pp.385-388, 2004
    [49] H. Umezawa, S. Shikata, “Diamond High-Temperature Power Devices”, International Symposium on Power Semiconductor Devices & IC's, pp.259-262, 2009
    [50] S. Kone, H. Ding, H. Schneider, K. Isoird, G. Civrac, “High Performances CVD Diamond Schottky Barrier Diode - Simulation and Carrying Out”, European Conference on Power Electronics and Applications, pp.1-8, 2009
    [51] D. Eon, A. Traoré, J. Pernot, E. Gheeraert, “Recent Progress on Diamond 76
    Schottky Diode”,International Symposium on Power Semiconductor
    Devices & ICs, pp.55-58, 2016
    [52] A. Traore, P. Muret, A. Fiori, D. Eon, E. Gheeraert, J. Pernot, “Zr/Oxidized
    Diamond Interface for High Power Schottky Diodes”, Applied Physics
    Letters, vol.104, pp.1-4, 2014
    [53] T. Makino, H. Kato, N. Tokuda, M. Ogura, D. Takeuchi, K. Oyama, S.
    Tanimoto, H. Okushi, S. Yamasaki, ” Diamond Schottky-pn Diode without Trade-off Relationship Between On-Resistance and Blocking Voltage”, Physica Status Solidi (a), vol.207, pp.2105–2109, 2010
    [54] T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, S. Yamasaki, “Device Design of Diamond Schottky-pn Diode for Low-Loss Power Electronics”, Japanese Journal of Applied Physics, vol.51, pp.1-7, 2012
    [55] T. Matsumoto, T. Mukose, T. Makino, D. Takeuchi, S. Yamasaki, T. Inokuma, N. Tokuda, “Diamond Schottky-pn Diode Using Lightly Nitrogen-Doped Layer”, Diamond & Related Materials, vol.75, pp.152–154, 2017
    [56] M. Dutta, F.A.M. Koeck, R.J. Nemanich, S. Chowdhury, "P-I-N Diodes Enabled by Homoepitaxially Grown Phosphorus Doped Diamond With Breakdown Electric Field >1.25 MV/cm", Device Research Conference, pp.184-184, 2015
    [57] M. Dutta, F. A. M. Koeck, R. Hathwar, S. M. Goodnick, R. J. Nemanich, S. Chowdhury, “Demonstration of Diamond-Based Schottky p-i-n Diode With Blocking Voltage > 500 V”, IEEE Elecron Device Letters, vol.37, pp.1170-1173, 2016
    [58] M. Dutta, F. A. M. Koeck, W. Li, R. J. Nemanich, S. Chowdhury, “High 77
    Voltage Diodes in Diamond Using (100)- and (111)- Substrates”, Elecron
    Device Letters, vol.38, pp.600-603, 2017
    [59] H. Umezawa, T. Matsumoto, S. Shikata, “Diamond Metal–Semiconductor
    Field-Effect Transistor With Breakdown Voltage Over 1.5 kV ”, IEEE
    Elecron Device Letters, vol.35, pp.1112-1114, 2014
    [60] H. Shiomi, Y. Nishibayashi, N. Toda, S. Shikata, “Pulse-Doped Diamond
    P-Channel Metal Semiconductor Field-Effect Transistor ”, IEEE Elecron
    Device Letters, vol.16, pp.36-38,1995
    [61] A. Vescan, P. Gluche, W. Ebert, and E. Kohn, “High-Temperature,
    High-Voltage Operation of Pulse-Doped Diamond MESFET”, IEEE Elecron
    Device Letters, vol.18, pp.222-224, 1997
    [62] A. J. Tessmer, K. Das and D. L. Dreifus, “Polycrystalline Diamond
    Field-Effect Transistors”, Diamond & Related Materials, vol.1, pp.89-92,
    1992
    [63] D. L. Dreifus, A. J. Tessmer, J. S. Holmes, C. Kao, D. M. Malta, L. S. Plano,
    B. R. Stoner, "Diamond Field-Effect Transistors", High-Temperature
    Electronics, pp.466-477, 1999
    [64] L. Y. S. Pang, S. S. M. Chan, C. Johnston, P. R. Chalker, R. B. Jackman,
    “High Temperature Polycrystalline Diamond Metal-Insulator- Semiconductor Field-Effect-Transistor”, Diamond & Related Materials, vol.6, pp.333-338, 1997
    [65] K. Tsugawa, K. Kitatani, H. Noda, A. Hokazono, K. Hirose, M. Tajima, H. Kawarada, "High-Performance Diamond Surface-Channel Field-Effect Transistors and Their Operation Mechanism", Diamond & Related Materials, vol.8, pp.927-933, 1999
    78
    [66] F. Maier, M. Riedel, B. Mantel, J. Ristein, and L. Ley, "Origin of Surface Conductivity in Diamond", Physical Review Letters, vol.85, pp.3472-3475, 2000
    [67] H. Sato, M. Kasu, "Maximum Hole Concentration for Hydrogen-Terminated Diamond Surfaces With Various Surface Orientations Obtained by Exposure to Highly Concentrated NO2", Diamond & Related Materials, vol.31, pp.47–49, 2013
    [68] H. Kawarada, M. Aoki, M. Ito, “Enhancement Mode Metal-Semiconductor Field Effect Transistors Using Homoepitaxial Diamonds”, Applied Physics Letters, vol.65, pp.1563-1565, 1994
    [69] H. Kawarada, “Hydrogen-Terminated Diamond Surfaces and Interfaces”, Surface Science Reports, vol.26, pp.205-259, 1996
    [70] H. Ishizaka, M. Tachiki, K. Song, H. Umezawa, H. Kawarada, “Cryogenic Operation of Surface-Channel Diamond Field-Effect Transistors”, Diamond & Related Materials, vol.12, pp.1800-1803, 2003
    [71] H. Noda, A. Hokazono, H. Kawarada, “Device Modeling of High Performance Diamond MESFETs Using P-Type Surface Semiconductive Layers”, Diamond & Related Materials, vol.6, pp.865-868, 1997
    [72] C. Verona, W. Ciccognani, S. Colangeli, F. D. Pietrantonio, E. Giovine, E. Limiti, M. Marinelli, G. Verona-Rinati, "Gate–Source Distance Scaling Effects in H-Terminated Diamond MESFETs", IEEE Transactions on Elelectron Devices, vol.62, pp.1150-1156, 2015
    [73] H. J. Looi, L. Y. S. Pang, Y. Wang, M. D. Whitfield, R. B. Jackman, “Enhancement Mode Metal-SemiconductorField Effect Transistors from Thin-Film Polycrystalline Diamond”, IEEE Electron Device Letters, vol.19,
    79
    pp.112-114, 1998
    [74] H. Umezawa, K. Tsugawa, S. Yamanaka, D. Takeuchi, H. Okushi, H.
    Kawarada, ” High-Performance Diamond Metal-Semiconductor Field-Effect Transistor with 1 μm Gate Length”, Japanese Journal of Applied Physics, vol. 38, pp.1222–1224, 1999
    [75] A. Aleksov, A. Denisenko, U. Spitzberg, T. Jenkins, W. Ebert, E. Kohn, "RF Performance of Surface Channel Diamond FETs With Sub-Micron Gate Length", Diamond & Related Materials, vol.11, pp.382–386, 2002
    [76] Oliver A Williams, Richard B Jackman, "Surface Conductivity on Hydrogen Terminated Diamond", Semiconductor Science and Technology, Vol.18, pp.34-40, 2003
    [77] P. Calvani, A. Corsaro, F. Sinisi, M.C. Rossi, G. Conte, S. Carta, E. Limiti, “Microwave Performance of Surface Channel Diamond MESFETs”, IEEE Nanotechnology Materials and Devices Conference, pp.200-204, 2009
    [78] Y. Zhang, L. J. Wang, J. Huang, K. Tang, F. Zhang, Q. Fang, Q. Zeng, R. Xu, J. Zhang, J. Min, Y. Xia, "The Electrical Properties of The Diamond Field Effect Transistor", Asia Communications and Photonics conference and Exhibition, pp.1-6, 2009
    [79] H. Taniuchi, H. Umezawa, T. Arima, M. Tachiki, H. Kawarada, “High-Frequency Performance of Diamond Field-Effect Transistor”, IEEE Electron Device Letters, vol.22, pp.390-392, 2001
    [80] P. Calvani, A. Corsaro, M. Girolami, F. Sinisi, D.M. Trucchi, M.C. Rossi, G. Conte, S. Carta, E. Giovine, S. Lavanga, E. Limiti, V. Ralchenko, “DC and RF Performance of Surface Channel MESFETs on H-Terminated Polycrystalline Diamond”, Diamond & Related Materials, vol.18, pp.786–
    80
    788, 2009
    [81] B. Pasciuto, W. Ciccognani, E. Limiti, P. Calvani, M. C. Rossi, G. Conte,
    “Modeling of Metal-Semiconductor Field-Effect-Transistor on H-Terminated Polycrystalline Diamond”, International Conference on Ultimate Integration of Silicon, pp.261-264, 2009
    [82] P. Calvani, G. Conte, D. Dominijanni, E. Giovine, B. Pasciuto, E. Limiti, “Hydrogen Terminated Diamond MESFETs: New Technology for RF Power Applications”, European Microwave Integrated Circuits Conference, pp.122-125, 2010
    [83] D. A. J. Moran, D. A. MacLaren, S. Porro, H. McLelland, P. John, J. I. B. Wilson, "Processing of 50 nm Gate-Length Hydrogen Terminated Diamond FETs for High Frequency and High Power Applications", Microelectronic Engineering, vol.88, pp.2691–2693, 2011
    [84] D. A. J. Moran, S. A. O. Russell, S. Sharabi, A. Tallaire, "High Frequency Hydrogen-Terminated Diamond Field Effect Transistor Technology", IEEE International Conference on Nanotechnology, pp.1-5, 2012
    [85] V. Camarchia, F. Cappelluti, G. Ghione, E. Limiti, D. A. J. Moran, M. Pirola, “An Overview on Recent Developments in RF and Microwave Power H-Terminated Diamond MESFET Technology”, International Workshop on Integrated Nonlinear Microwave and Millimetre-wave Circuits, pp.1-6, 2014
    [86] K. Ueda, M. Kasu, Y. Yamauchi, T. Makimoto, M. Schwitters, D. J. Twitchen, G. A. Scarsbrook, S. E. Coe, ”Diamond FET Using High-Quality Polycrystalline Diamond With fT of 45 GHz and fmax of 120 GHz”, IEEE Eelctron Device Letters, vol.27, pp.570-572, 2006
    [87] A. Hokazono, T. Ishikura, K. Nakamura, S. Yamashita, H. Kawarada, 81
    “Enhancement/Depletion MESFETs of Diamond and Their Logic Circuits”, Diamond & Related Materials, vol.6, pp.339-343, 1997
    [88] K. G. Crawford, “Enhanced Surface Transfer Doping of Diamond by V2O5
    With Improved Thermal Stability,” Applied Physics Letters, vol.108, pp. 1–4,
    2016
    [89] C. Verona, W. Ciccognani, S. Colangeli, E. Limiti, M. Marinelli, G.
    Verona-Rinati, D. Cannatà, M. Benetti, F. D. Pietrantonio, “V2O5 MISFETs on H-Terminated Diamond”, IEEE Transactions on Electron Devices, vol.63, pp.4647-4653, 2016
    [90] M. Tordjman, C. Saguy, A. Bolker, R. Kalish, “Superior Surface Transfer Doping of Diamond With MoO3”, Advanced Materials Interfaces, vol.1, pp.1-6, 2014
    [91] K. Hiramal, H. Takayanagil, S. Yamauchil, Y. Jingul, H. Umezawa, H. Kawaradal, “Diamond MISFETs Fabricated on High Quality Polycrystalline CVD Diamond”, International Symposium on Power Semiconductor Devices & ICs, pp.269-272, 2007
    [92] M. Syamsul, Y. Kitabayashi, T. Kudo, D. Matsumura, H. Kawarada, “High Voltage Stress Induced in Transparent Polycrystalline Diamond Field-Effect Transistor and Enhanced Endurance Using Thick Al2O3 Passivation Layer”, IEEE Electron Device Letters, vol.38, pp.607-610, 2017
    [93] K. Hirama, T. Koshiba, K. Yohara, H. Takayanagi, S. Yamauchi, M. Satoh, H. Kawarada, "RF diamond MISFETs Using Surface Accumulation Layer", International Symposium on Power Semiconductor Devices & IC's, pp.1-4, 2006
    [94] H. Kawarada, "High-Current Metal Oxide Semiconductor Field-Effect 82
    Transistors on H-Terminated Diamond Surfaces and Their High-Frequency
    Operation", Japanese Journal of Applied Physics, vol.51, pp.1-6, 2012
    [95] S. A. O. Russell, S. Sharabi, A. Tallaire, D. A. J. Moran, "Hydrogen-Terminated Diamond Field-Effect Transistors With Cutoff Frequency of 53 GHz", IEEE Electron Device Letters, vol.33, pp.1471-1473,
    2012
    [96] H. Matsudaira, S. Miyamoto, H. Ishizaka, H. Umezawa, H. Kawarada,
    “Over 20-GHz Cutoff Frequency Submicrometer-Gate Diamond MISFETs”,
    IEEE Electron Device Letters, VOL.25, pp.480-482, 2004
    [97] K. Hirama, K. Tsuge, S. Sato, T. Tsuno, Y. Jingu, S. Yamauchi, H. Kawarada, “High-Performance P-Channel Diamond Metal–Oxide– Semiconductor Field-Effect Transistors on H-Terminated (111) Surface”,
    Applied Physics Express, vol.3, pp.1-3, 2010
    [98] T. Iwasaki, J. Yaita, H. Kato, T. Makino, M. Ogura, D. Takeuchi, H. Okushi,
    S. Yamasaki, M. Hatano, “600 V Diamond Junction Field-Effect Transistors Operated at 200 °C”, IEEE Electron Device Letters, vol.35, pp.241-243, 2014
    [99] T. Suwa, T. Iwasaki, K. Sato, H. Kato, T. Makino, M. Ogura, D. Takeuchi, S. Yamasaki, M.Hatano, “Normally-Off Diamond Junction Field-Effect Transistors With Submicrometer Channel”, IEEE Electron Device Letters, vol.37, pp.209-211, 2016
    [100] T. Iwasaki, Y. Hoshino, K. Tsuzuki, H. Kato, T. Makino, M. Ogura, D. Takeuchi, T. Matsumoto, H. Okushi, S. Yamasaki, M. Hatano, ”Diamond Semiconductor JFETs by Selectively Grown n+-Diamond Side Gates for Next Generation Power Devices”, International Electron Devices Meeting,
    83
    pp.751-754, 2012
    [101] Y. Hoshino, H. Kato, T. Makino, M. Ogura, T. Iwasaki, M. Hatano, S.
    Yamasaki, ” Electrical Properties of Lateral p–n Junction Diodes Fabricated by Selective Growth of n+ Diamond”, Physica Status Solidi (a), vol.209, pp.1761–1764, 2012
    [102] T. Iwasaki, Y. Hoshino, K. Tsuzuki, H. Kato, T. Makino, M. Ogura, D. Takeuchi, H. Okushi, S. Yamasaki, M. Hatano, “High-Temperature Operation of Diamond Junction Field-Effect Transistors With Lateral p-n Junctions”, IEEE Electron Device Letters, vol.34, pp.1175-1177, 2013
    [103] T. Iwasaki, H. Kato, T. Makino, M. Ogura, D. Takeuchi, S. Y., M. Hatano, ” High-Temperature Bipolar-Mode Operation of Normally-Off Diamond JFET”, Electron Devices Society, vol.5, pp.95-99, 2017
    [104] T. Iwasaki, H. Kato, J. Yaita, T. Makino, M. Ogura, D. Takeuchi, H. Okushi, S. Yamasaki, M. Hatano, “Current Enhancement by Conductivity Modulation in Diamond JFETs for Next Generation Low-Loss Power Devices”, International Symposium on Power Semiconductor Devices & IC's, pp.77-80, 2015
    [105] J. J. Wang, Z. Z. He, C. Yu, X. B. Song, H. X. Wang, F. Lin, Z. H. Feng, "Comparison of Field-Effect Transistors on Polycrystalline and Single-Crystal Diamonds", Diamond & Related Materials, vol.70, pp.114– 117, 2016
    [106] K. Hirama, H. Takayanagi, S. Yamauchi, J. H. Yang, H. Kawarada, H. Umezawa, "Spontaneous Polarization Model for Surface Orientation Dependence of Diamond Hole Accumulation Layer and Its Transistor Performance", Applied Physics Letters, vol.92, pp.1-3, 2008
    84
    [107] E. O. Johnson, “Physical Limitations on Frequency and Power Parameters of Transistors”, RCA Electronic Components and Devices Somerville, pp.27-34, 1965
    [108] R. W. Keyes, “Figure of Merit for Semiconductors for High-Speed Switches”, Proc. IEEE, vol.60, pp.225, 1972
    [109] B. J. Baliga, “Semiconductors for High-Voltage, Vertical Channel FET’s”, Journal of Applied Physics, vol.53, pp.1759-1764, 1982
    [110] R. F. Davis, J. W. Palmoue, J. A. Edmond, "A Review of The Status of Diamond and Silicon Carbide Devices for High- Power, High-Temperature and-Frequency Applications", International Technical Digest on Electron Devices, pp.785-788,1990
    [111] C. J. H. Wort, R. S. Balmer, “Diamond as An Electronic Material”, Materials Today, vol.11, pp.22-28, 2008

    QR CODE
    :::