跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳欣茂
Hsin-Mow Wu
論文名稱: 利用沸石前驅物與 Gemini 界面活性劑合成 含鋁之 MCM-48 中孔洞分子篩
Aluminosilicate MCM-48 mesostructures assembled from dried zeolite precursors and Gemini surfactant
指導教授: 高憲明
Hsien-Ming Kao
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
畢業學年度: 92
語文別: 中文
論文頁數: 90
中文關鍵詞: 中孔洞材料沸石
外文關鍵詞: zeolite, mesoporous
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗已成功地利用乾燥後之 ZSM-5 及 Beta 沸石前驅物 與 Gemini 界面活性劑經自我組裝排列的過程,合成出矽鋁比20~∞ 之 MCM-48,所合成的樣品透過各種技術的鑑定,包括粉末 X-ray 繞射、27Al NMR、29Si NMR、傅立葉紅外光光譜、掃描式電子顯微鏡、穿透式電子顯微鏡、氮氣吸脫附儀、感應耦合電漿原子發射光譜儀、催化活性測試和水熱蒸氣測試。結果顯示經由 MFI 及 BEA 沸石前驅物排列而成的 MCM-48 表面積皆可高達1250 m2 g-1以上,而孔徑平均分佈在3.8nm至4.2nm之間。另外經由 MFI 及 BEA 沸石前驅物排列而成之 MCM-48 活性比直接摻鋁之 MCM-48 優越,且水熱蒸氣測試結果也比純矽的 MCM-48 及直接摻鋁的 MCM-48 優秀許多。另外實驗中也發現,只要改變沸石前驅合成之溫度及後來水熱之溫度便可以輕易的控制產物成為 MCM-48 、 MCM-48/ MFI crystals 複合物或是 MFI crystals。


    Aluminosilicates with well-ordered MCM-48 mesostructures have been prepared via the assembly of “dried” zeolite precursors with Gemini surfactant. The aluminosilicate MCM-48 materials obtained were characterized by a variety of techniques including powder X-ray diffraction (XRD), 27Al and 29Si magic angle spinning (MAS) NMR, IR, transmission electron microscope (TEM), scanning electron microscope (SEM), nitrogen sorption measurements. The use of Gemini surfactant and the dried zeolite precursor facilitated the incorporation of higher Al contents (Si/Al ratio up to 20) into MCM-48 framework without compromising the integrity of the cubic mesostructure. In comparison to the Al-MCM-48 sample prepared via the direct synthesis, the materials assembled from zeolite precursors showed higher hydrothermal stability and better cumene cracking activities. Although the dried precursors of MFI and BEA zeolites could not be differentiated by all physical measurements made, the catalytic cracking activity of their derived samples did show differences. By varying the temperatures for the preparation of zeolite precursor and for the hydrothermal treatment after surfactant addition, materials ranging from zeolitic MCM-48, zeolite/MCM-48 composite, and pure zeolite nanocrystals could be obtained.

    第一章 緒論...........................................1 1.1 沸石簡介.........................................1 1.2 中孔洞材料之回顧.................................7 第二章 文獻探討.......................................13 2.1 使用沸石前驅物合成中孔洞材料之文獻探討...........13 2.2 MCM-48文獻回顧.................................16 2.3 研究動機.........................................17 第三章 實驗部分.......................................20 3.1 化學藥品.........................................20 3.2 實驗儀器.........................................20 3.3 樣品合成.........................................22 3.4 樣品的鑑定.......................................24 第四章 結果與討論.......................................32 4.1 元素分析結果........................................32 4.2 傅立葉紅外線光譜儀分析..............................33 4.3 X-光粉末繞射儀分析..................................34 4.4 氮氣恆溫吸脫附儀分析................................35 4.5 27Al NMR 鑑定.......................................36 4.6 29Si NMR 鑑定.......................................37 4.7 SEM 與TEM 之鑑定.................................38 4.8 TGA 之鑑定結果.....................................39 4.9 觸媒活性測試........................................40 4.10 水熱蒸氣測試........................................41 4.11 改變合成前驅物時之溫度對產物之影響..................42 4.12 改變水熱反應溫度對產物造成之影響....................43 4.13 以 Al(OC3H7)3 為鋁源之合成結果.......................45 第五章 結論..............................................85

    1. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuil, J. C.; Beck, J. S. Nature 1992, 359, 710.
    2. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowics, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T.-W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgings, J. B.; Schlenker, J. L. J. Am. Chem. Soc. 1992, 114, 10834.
    3. Sayari, A. Chem. Mater. 1996, 8, 1840.
    4. Khenkin, K. Chem. Commun. 1996, 23, 2643.
    5. Charkaborty, B.; Pulikottil A. C.; Viswanathan, B. Catal. Lett. 1996, 39, 63.
    6. Harthmann, M.; Popll A.; Kenvan, L. J. Phys. Chem. 1996, 100, 9906.
    7. Corma, A.; Navarro, M. T.; Prez-Pariente J.; Sanchez, F. Stud. Surf. Sci. Catal. 1994, 84, 69.
    8. Reddy, J. S.; Sayari, A. Chem. Commun., 1995, 2231.
    9. Wu, C.-G.; Bein, T. Science 1994, 264, 1757.
    10. Wu, C.-G.; Bein, T. Science 1994, 266, 1013.
    11. Wu, C.-G.; Bein, T. Chem. Mater. 1994, 6, 1109.
    12. Lee, Y. S.; Surjadi, D.; Rathman, J. F. Langmuir, 1996, 12, 6202.
    13. Tsang, S. C.; Davis, J. J.; Green, M. L. H.; Hill, H. A. O.; Leung, Y. C.; Sadler, P. J. J. Chem. Soc., Chem. Commun. 1995, 1803.
    14. Abe, T.; Tachibana, Y.; Uemtsu, T.; Iwamoto, M. J. Chem. Soc., Chem. Commun. 1995, 1617.
    15. Tanev, P. T.; Pinnavaia, T. J. Science 1995, 267, 865.
    16. Tanev, P. T.; Chibwe, M.; Pinnavaia, T. J. Nature 1994, 368, 321.
    17. Tanev, P. T.; Pinnavaia, T. J. Chem. Mater. 1996, 8, 2068.
    18. Inagaki, S.; Fukushima, Y.; Kuroda, K. J. Colloid Interface Sci. 1996, 180, 623.
    19. Vartuli, J. C.; Kresge, C. T.; Leonowicz, M. E.; Chu, A. S.; McCullen, S. B.; Johnson, I. D.; Sheppard, E. W. Chem. Mater. 1994, 6, 2070.
    20. Ishikawa, T.; Matsuda, M.; Yasukawa, A.; Kandori, K.; Inagaki, S.; Fukushima, T.; Kondo, K. J. Chem. Soc., Faraday Trans. 1996, 92, 1985.
    21. Chen, C.-Y.; Xia, S.-Q.; Davis, M. E. Microporous Mater. 1995, 4, 1.
    22. Beneke, K.; Lagaly, G. Am. Mineral. 1977, 62, 763.
    23. Inagaki, S.; Fukushima, Y.; Kuroda, K. J. Chem. Soc., Chem. Commun. 1993, 680.
    24. Galarneau, A.; Barodawalla, A.; Pinnavaia, T. J. Nature 1995, 374, 529.
    25. Galarneau, A.; Barodawalla, A.; Pinnavaia, T. J. Chem. Commun. 1997, 1661.
    26. Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Science 1998, 279, 548.
    27. Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D. J. Am. Chem. Soc. 1998, 120, 6024.
    28. Imperor-Clerc, M.; Davidson, P.; Davidson, A. J. Am. Chem. Soc. 2000, 122, 11925.
    29. Kruk, M.; Jaroniec, M.; Ko, C. H.; Ryoo, R. Chem. Mater. 2000, 12, 1961.
    30. Ryoo, R.; Ko, C. H.; Kruk, M.; Antochshuck, V.; Jaroniec, M. J. Phys. Chem. B 2000, 104, 11465.
    31. Ravikovitch, P. I.; Neimark, A. V. J. Chem. Phys. B 2001, 105, 6817.
    32. Liu, Y.; Zhang, W.; Pinnavaia, T. J. J. Am. Chem. Soc. 2000, 122, 8791.
    33. Liu, Y.; Zhang, W.; Pinnavaia, T. J. Angew. Chem., Int. Ed. 2001, 40, 1255.
    34. Zhang, Z.; Han, Y.; Zhu, L.; Wang, R.; Yu, Y.; Qiu, S.; Zhao, D.; Xiao, F.-S. Angew. Chem., Int. Ed. 2001, 40, 1258.
    35. Han, Y.; Wu, S.; Sun, Y.; Li, D.; Xiao, F.-S.; Liu, J.; Zhang, X. Chem. Mater. 2002, 14, 1144.
    36. Liu, Y.; Pinnavaia, T. J. J. Am. Chem. Soc. 2003, 125, 2376.
    37. Shih, P. C.; Lin, H. P.; Mou, C. Y. Stud. Surf. Sci. Catal. 2003, 146, 557.
    38. Li, Y.; Shi, J.; Chen, H.; Hua, Z.; Zhang, L.; Ruan, M.; Yan, J.; Yan, D. Micropor. Mesopor. Mater. 2003, 60, 51.
    39. Li, Y.; Shi, J.; Chen, H.; Hua, Z.; Zhang, L.; Ruan, M.; Yan, J.; Yan, D. Nano Lett. 2003, 3, 609.
    40. Monnier, A.; Schuth, F.; Huo, Q.; Kumar, D.; Margolese, D.; Maxwell, R. S.; Stucky, G. D.; Krishnamurty, M.; Petroff, P.; Firouzi, A.; Janicke, M.; Chmelka, B. F. Science 1993, 261, 1299.
    41. Xu, J.; Luan, Z.; He, H.; Zhou, W.; Kevan, L. Chem. Mater. 1998, 10, 3690.
    42. Schmidt, R.; Junggreen, H.; Stocker, M. Chem. Commun. 1996, 875.
    43. Gallis, K. W.; Landry, Ch. C. Chem. Mater. 1997, 9, 2035.
    44. Van der Voort, P.; Morey, M.; Stucky, G. D.; Mathieu, M.; Vansant, E. F. J. Phys. Chem. B 1998, 102, 585.
    45. Sayari, A. J. Am. Chem. Soc. 2000, 122, 6504.
    46. Liu, Y.; Karkamkar, A.; Pinnavaia, T. J. Chem. Commun. 2001, 1822.
    47. Van Der Voort, P.; Mathieu, M.; Mees, F.; Vansant, E. F. J. Phys. Chem. B 1998, 102, 8847.
    48. Collart, O.; Van Der Voort, P.; Vansant, E. F.; Desplantier, D.; Galarneau, A.; Di Renzo, F.; Fajula, F.; J. Phys. Chem. B. 2001, 105, 12771.
    49. Atwood, G. A.; Greene, H. L.; Chintawar, P.; Rachapudi, R.; Ramachandran, B.; Vogel, C. A. Trichloroethylene Sorption and Oxidation Using a Dual Function Sorbent/Catalyst in a Falling Furnace Reactor. Appl. Catal. B 1998, 18, 51.
    50. Hartmann, M.; Bischof, C. Mechanical Stability of Mesoporous Molecular Sieve MCM-48 Studied by Adsorption of Benzene, n-Heptane, and Cyclohexane. J. Phys. Chem. B 1999, 103, 6230.
    51. Zhao, X. S.; Lu, G. Q. Organophilicity of MCM-41 Adsorbents Studied by Adsorption and Temperature-Programmed Desorption. Colloids Surf. A 2001, 179, 261.
    52. Kawi, S.; Te, M. MCM-48 Supported Chromium Catalyst for Trichloroethylene Oxidation. Catal. Today 1998, 44, 101.
    53. Paulis, M.; Gandia, L. M.; Gil A.; Sambeth, J.; Odriozola, J. A.; Montes, M. Influence of the Surface Adsorption-Desorption Processes on the Ignition Curves of Volatile Organic Compounds (VOCs) Complete Oxidation over Supported Catalysts. Appl. Catal. B 2000, 26, 37.
    54. Schumacher, K.; Ravikovitch, P. I.; Chesne, A. D.; Neimark, A. V.; Unger, K. K. Characterization of MCM-48 Materials. Langmuir 2000, 16, 4648.
    55. Huo, Q.; Margolese, D. I.; Stucky, G. D. Chem. Mater. 1996, 8, 1147.

    QR CODE
    :::