跳到主要內容

簡易檢索 / 詳目顯示

研究生: 劉智偉
Chin-Wei Liu
論文名稱: 地震水井水力學之理論模式改良與發展及同震水位資料分析
指導教授: 陳家洵
Chia-Shyun Chen
馬國鳳
Kuo-Fong Ma
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 地球物理研究所
Graduate Institue of Geophysics
畢業學年度: 93
語文別: 中文
論文頁數: 86
中文關鍵詞: 深度修正地震-地下水地震水井水力學同震水位
外文關鍵詞: depth independent, coseismic water level, seismic well hydraulics theories
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 921集集大地震引發之井中同震水位變化,促進了台灣地震-地下水的相關性研究。分析同震水位資料需要假設合宜且立論正確的地震水井水力學,然而現有之地震水井水力學尚有諸多限制與可改進之處,本研究首先將改良地震水井水力學理論模式,將薄壁效應納入考量,提高同震水位資料分析力與實用性。經參數敏感度分析發現,振幅比( )在高滲透性含水層中會有一峰值出現,且有效井深( )會影響峰值出現之週期,但較不受到含水層儲蓄係數( )及薄壁效應( )之影響。在低滲透性含水層中, 值小於1且呈單向增加函數,顯示有縮小效應,不受 之影響,但受到 及 的影響甚大。現有之地震水井水力學皆假設 為已知定值,但考慮不同情況會有不同的定義,較無代表性的物理意義,且諸多的文獻中皆指出 應視為未知的參數,可用來調整理論曲線使其符合現場資料分析,又實際分析資料顯示調整 可是理論曲線更吻合現場資料,因為建議將 視為未知可調之參數。由於在高滲透性含水層中不受 的影響,因此可發展類穩態之地震水井水力學理論模式,使高滲透性含水層中的同震水位分析更簡單。除此之外,在中央大學地下水研究井場之同震水位觀測井中發現,同震水壓之震盪頻率相當高(高於2 Hz),因此觀測同震水位需使用高測頻之量測儀器。又在不同深度會有不同之同震水壓反應,而理論模式皆為對井水位面作為分析,故使用壓力計量測同震水位時,最好放置於原始水位面下0.5公尺以內,避免深度之影響。經分析低滲透性含水層之同震水位資料所得之結果與理論相符,顯示低滲透性含水層中之同震水位對於地震造成含水層中壓力頭的震盪振幅確實會有縮小效應。


    The coseismic water level changes induced by the Chichi earthquake promoted the research of relationship between earthquake and groundwater. To analyze coseismic water level data must have correct seismic well hydraulics theories, but existing theories have a few limits and unreasonable conditions. The first purpose is to improve the current seismic well hydraulics theories and take into account the skin effect ( ). In high permeability aquifer, the effective column height ( ) changes the period that pick of magnification ratio occurs, but have not influence by and . In low permeability aquifer, the magnification ratio affected by Sk, but have not influence by . Present seismic well hydraulics theories assume that is known and can be calculated, but definition is different at different conditions considered. Many documents also indicate that is unknown and can be adjusted to field data. In practical application, regulate can make the theory curve match the field data. Therefore we suggest that when using seismic well hydraulics theory, take be a unknown parameter. Because in high permeability aquifer the coseismic water level changes have not influence by , analyze coseismic water level data can use quasi-static state seismic well hydraulics theory that it make the analysis more simple. Field data indicates that the frequency of variation is larger than 2Hz. So observe the coseismic water level change must use transducer with high sampling rate. Besides, it also indicates that seismic well water pressure variation increases with well water depth. Therefore when observe coseismic water level change using pressure transducer, it must put within 5m below water level. Analyze the field data in low permeability aquifer shows that it is match the theory curve, and indicates that the variation in the well is small than in the aquifer.

    目錄 i 圖目錄 iii 符號說明 vi 第一章 背景與目的 1 1.1 前言 1 1.2 研究問題 3 1.3 研究目的 8 第二章 現有之地震水井水力學理論模式 9 2.1 Cooper et al. (1965)之理論模式 9 2.2 Liu et al. (1989)之理論模式 13 2.3 討論 16 第三章 地震水井水力學理論模式之改良 19 3.1 薄壁之概念化與模式化 19 3.2 假設與數學模式 21 3.3 求解振幅比 25 3.4 參數敏感度分析 27 3.5 有效井深之討論 33 第四章 類穩態地震水井水力學理論模式發展 36 4.1 數學模式 36 4.2 驗證 39 第五章 井中同震水位與深度變化之關係 43 5.1 實驗場址介紹 43 5.2 同震水位量測技術 45 5.2.1 水位面量測計 45 5.2.2 壓力計 46 5.3 井水壓與深度變化觀測 47 5.4 深度修正 59 5.4.1 直接使用壓力計資料可能造成的誤差 59 5.4.2 深度修正 62 第六章 低滲透性含水層同震水位資料分析 68 6.1 同震水位資料分析方法 68 6.2 同震水位資料分析 70 第七章 結論與建議 75 參考文獻 77 附錄一 暫態 之詳細推導 82 附錄二 類穩態 之詳細推導 85

    Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions., Dover Publications, 1972.
    Agarwal, R. G., R. Al-Hussainy, and H. J. Ramey, Jr., An investigation of wellbore storage and skin effect in unsteady liquid flow: I. Analytical treatment, Soc. Pet. Eng. J., 279-290, 1970.
    Bodvarsson, G., Confined fluids as strainmeters, J. Geophys. Res., 75(14), 2711-2718, 1970.
    Bredehoeft J. D., Response of Well-Aquifer systems to earth tides, J. Geophys. Res., 72,3075-3087, 1967.
    Brodsky, E. E., E. Roeloffs, D. Woodcock, I. Gall, and M. Manga, A mechanism for sustained groundwater pressure changes induced by distant earthquakes. J. Geophys. Res., 108(B8), 2390, doi:10.1029/2002JB002321, 2003.
    Butler J. J., Jr., The Dsign, Performance, and Analysis of Slug Test, Boca Ration, Florida: Lewis Publishers, 1998.
    Butler J. J., Jr., E. J. Granett and J. M. Healey, Analysis of slug tests in formations of high hydraulic conductivity, Ground water, 41, no.5, 620-630, 2003.
    Chang, C. C., and C. S. Chen, SCIE, Field experiment and data analysis of a constant-head injection test with skin effects in a low-transmissivity aquifer, TAO, 13(1), 15-38, 2002a.
    Chang, C. C., and C. S. Chen, An integral transform approach for a mixed boundary problem involving a flowing partially penetrating well with infinitesimal well skin, Water Resour. Res., 38(6), doi:10.1029/2001WR001091, 2002b.
    Chen, C. S., and C. C. Chang, Use of cumulative volume of constant-head injection test to estimate aquifer parameters with skin effects: field experiment and data analysis, Water Resour. Res., 38(5), 1056, doi:10.1029/2001WR000300, 2002.
    Chen, C. S., and C. C. Chang, SCI, Well hydraulics theory and data analysis for the constant head test in an unconfined aquifer with skin effect, Water Resour. Res, 39(5), 1121, doi:10.1029/2002WR001516, 2003.
    Chia, Y. P., S. Wang, J. J. Chiu, and C. W. Liu, Changes of groundwater level due to the 1999 Chi-Chi earthquake in the Choshui River alluvial fan in Taiwan, Bull. Seismol. Soc. Am., 91(5), 1062-1068, 2001.
    Chu, W. C., J. Garcia-Rivera, and R. Raghavan, Analysis of interference test data influenced by wellbore storage and skin at the flowing well, J. Pet. Tech., 171-178, 1980.
    Cooper, H. H., J. J. D. Bredehoeft, I. S. Papadopulos, and R. R. Bennett, The response of well-aquifer system to seismic waves, J. Geophys. Res., 70(16), 3915-3926, 1965.
    Eaton, J. P., and K. J. Takasaki, Seismological interpretation of earthquake-induced water-level fluctuations in well, Bull. Seismol. Soc. Am., 49, 227-245, 1959.
    Freeze, R. A., and J. A. Cherry, Groundwater, 604pp., 1979.
    Hsieh, P. A., J. D. Bredehoeft, and J. M. Farr, Determination of aquifer transmissivity from earth tide analysis, Water Resour. Res., 23(10), 1824-1932, 1987.
    Kabala Z. J. G. F. Pinder, and P. C. D. Milly, Analysis of well aquifer response to a slug test, Water Resour. Res., 21(9), 1433-1436, 1985.
    Kipp K. L., Type curve analysis of inertial effects in the response of a well to a slug test, Water Resour. Res., 21(9), 1397-1408,1985.
    Lee, M., T-K, Liu, K-F Ma, and Y-M Chang, Coseismic hydrological changes associated with dislocation of the September 21, 1999, Chichi earthquake, Taiwan, Geophys. Res. Let., 29(17), 1824, doi:10.1029/2002GL015116, 2002.
    Liu, L. B., E. Roeloffs, and X. Y. Zheng, Seismically induced water level fluctuations in the Wali well, Beijing, China, J. Geophys. Res., 94(7), 9456-9462, 1989.
    McElwee, C. D., Butler, J. J., Jr., and Bohling, G. C., Nonlinear analysis of slug test in highly permeable aquifers using a Hvorslev-type approach, Kans. Geol. Surv. Open-File Rep., 92-39, 1992.
    McElwee, C. D., and M. A. Zeener, A nonlinear model for analysis of slug test data, Water Resour. Res., 34, no.1, 55-66, 1998.
    Moench, A. F., Flow to a well of finite diameter in a homogeneous, anisotropic water table aquifer, Water Resour. Res., 22(6), 1397-1407, 1997.
    Ohno, M., H. Wakita, and K. Kanjo, A water well sensitive to seismic waves, Geophys. Res. Lett., 24, 691-694, 1997.
    Roeloffs E., Poroelastic techniques in the study of earthquake-related hydrologic phenomena, adv. Geophy., 37, 135-195, Acadimic Press, San Diego, C. A, 1998.
    Roeloffs, E. A., Persistent water level changes in a well near Parkfield, California, duu to local and distant earthquakes, J. Geophys. Res., 103(B1), 869-889, 1998.
    Schwartz, F. W., and H. Zhang, Fundamentals of Ground Water, 583pp, 2003.
    Sneddon, I. N., Fourier Transforms, 542pp., McGraw-Hill Book Company, New York, 1951.
    Springer, R. K., and L. W. Gelhar, Characterization of large-scale aquifer heterogeneity in glacial outwash by analysis of slug tests with oscillatory response, Cape Cod, Massachusetts. U.S., Geological Survey Water-Resources Investigations Report, 91-4034, pp.3-40, 1991.
    Streltsova, T. D., Well Testing in Heterogeneous Formations, 413pp., 1988.
    Takashi, K., Y. Fukao, and M. Ohno, Underdamped responses of a well to nearby swarm earthquakes off the coast of Ito City, central Japan, 1995, J. Geophys. Res., 105, B4, 7805-7818, 2000.
    Van der Kamp, Determining aquifer transmissivity by means of well response tests: the underdamped case, Water Resour. Res., 12(1), 71-77, 1976.
    van Everdingen, A. F., The skin effect and its influence on the productive capacity of a well, Trans. Am. Inst. Min. Metall. Pet. Eng., 198, 171-176.
    Wylie C. R., L. C. Barrett, Advanced Engineering Mathematics, 1103pp., 1982.
    Zlotnik, V. A., and V. L. McGuire, 1998. Multi-level slug tests in highly permeable formations, 1, Modification of the Springer-Gelhar (SG) model, J. Hydrol 204: 271-282.
    Zurbuchen B. R. V. A. Zlotnik, J. J. Butler, Dynamic interpretation of slug tests in highly permeable aquifers, Water Resour. Res., 38(3), 10.1029/2001WR000354, 2002.

    QR CODE
    :::