跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王柏翔
Bo-Shiang Wang
論文名稱: 新型陽極蝕刻與氟離子處理之氮化鋁鎵/氮化鎵蕭基二極體
Novel AlGaN/GaN Schottky Barrier Diodes with Anode Recess and SF6 Treatment
指導教授: 綦振瀛
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 72
中文關鍵詞: 氮化鎵氮化鋁鎵蕭基二極體
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 節約能源是目前全世界各主要工業國家積極推動的政策,方法之一就是提高電子產品的效率。電源交換與供應器是電力、電子模組與系統不可或缺的組件,相關電子元件與電路的節能特性扮演關鍵角色。此研究之主題為電力電子電路中常用的蕭基二極體之設計與製作。傳統的功率蕭基二極體是以矽材料為主,若以氮化鎵材料取代之,可具有低導通電壓、高崩潰電壓、低漏電流以及快速切換特性等優點,對於電源切換模組效率之提高、體積尺寸之減小,都有很大潛力。
    蕭基二極體順偏操作狀態下,主要的功率損耗來源為導通電壓以及導通電阻。當蕭基二極體由順偏切換至逆偏狀態時,主要的功率損耗來自於切換期間內之電荷耗損。而在截止狀態時的功率損耗則主要來自於蕭基二極體的漏電流。為了降低蕭基二極體在各方面的耗損,本研究以AlGaN/GaN異質結構為基礎,採用陽極蝕刻方式降低蕭基能障,導通電壓可從1.3 V下降至0.6 V;另一方面,為了改善蕭基二極體的逆向偏壓特性,本研究採用了氟離子處理方式,使用SF6電漿將氟離子植入於陽極未蝕刻區域,有效使漏電流由12 μA下降至4 μA,崩潰電壓由400 V提升至455 V。此外,氟離子能夠減少陽極蝕刻過後在側壁所產生額外的寄生電容,使蕭基二極體在逆向偏壓為20 V的情況下,總空間電荷能夠由152 pC下降之125 pC,並使逆向回復時間下降至約10 ns,逆向回復電荷下降至約5 nC。本研究亦將元件置於高溫(150 oC)、高電壓(-200 V)壓力測試25小時,結果顯示,相較於平面製程元件,以陽極蝕刻及氟離子摻雜製程所製作之元件有較緩之劣化情形,表示元件中的氟離子還算相當穩定。


    High power AlGaN/GaN Schottky barrier diodes (SBDs) are essential switching devices for high efficiency power supplies and modules. The requirements on these SBDs include low turn-on voltage (Von), low on-resistance, high breakdown voltage (VB), low reverse leakage current (IR), and high switching speed. However, lowering Von by reducing Schottky barrier height has to be compromised with the increase in reverse leakage current. Although it has been shown that anode recess to the positions near or over the two-dimensional electron gas (2DEG) of AlGaN/GaN heterostructures can reduce turn-on voltage (Von) from ~1.5 V to ~0.4 V, this process might cause high IR due to the defects generated by the etching processes.
    In this work, we propose a novel way, i.e. anode recess and SF6 plasma treatment, to cope with this problem so that AlGaN/GaN SBDs can have a low turn-on voltage as well as a high reverse breakdown voltage simultaneously. Turn-on voltage (Von) can be reduced from 1.3 V to 0.6 V, reverse breakdown voltage (VB) can be increased from 400 V to 455 V at the expense of slight increase of on-resistance, meanwhile reverse recovery time can also be reduced from 12.9~14.4 ns to 9.6~10.7 ns. Moreover, less degradation is observed on the devices fabricated by the anode recess and fluorine ions implantation processes after stressing the devices at 150 oC, -200 V for 25 hours, indicating the stability of this new method.

    摘要 viii Abstrate x 誌謝 xi 目錄 xii 圖目錄 xiv 表目錄 xvii 第一章 緒論 1 1.1 前言 1 1.1.1 氮化鎵功率元件之應用及優勢 1 1.2 研究動機 3 1.2.1 氮化鎵蕭基二極體元件之簡介與發展 3 1.2.2 氮化鎵蕭基二極體元件面臨之瓶頸 9 1.3 論文架構 10 第二章 新型蕭基二極體元件製作與直流分析 11 2.1 前言 11 2.2 新型蕭基二極體之製作流程 12 2.3 新型蕭基二極體室溫電流-電壓特性分析 20 2.4 本章總結 27 第三章 新型蕭基二極體動態特性與穩定性測試 28 3.1 前言 28 3.2 新型蕭基二極體結構電容-電壓特性分析比較 29 3.3 新型蕭基二極體結構逆向回復特性分析比較 36 3.3.1 二極體逆向回復特性量測介紹 36 3.3.2 新型蕭基二極體結構逆向回復特性分析比較 40 3.4 新型蕭基二極體高溫穩定性測試 44 3.5 本章總結 47 第四章 新型蕭基二極體與傳統蕭基二極體應用於電路中之優勢比較 48 4.1 前言 48 4.2 新型蕭基二極體與傳統蕭基二極體應用於電路中之優勢比較 48 4.3 本章總結 50 第五章 結論與未來展望 51 參考文獻 53

    [1] E. Bahat-Treidel, O. Hilt, R. Zhytnytska, A. Wentzel, C. Meliani, J. Wurfl, and G. Trankle, "Fast-Switching GaN-Based Lateral Power Schottky Barrier Diodes With Low Onset Voltage and Strong Reverse Blocking," IEEE Electron Device Letters, vol. 33, pp. 357-359, 2012.
    [2] Yao Yao, JIan Zhong, Yue Zheng, Gan Yang, Yiqiang Ni, Zhiyuan He, Zhen Shan, Guillin Zhou, Shuo Wang, Jincheng Zhang, Jin Li, Deqiu Zhou, Zhisheng Wu, Baijun Zhang, and Yang Liu, "Current transport mechanism of AlGaN/GaN Schottky barrier diode with fully recessed Schottky anode," Japanese Jounal of Appiled Physics, vol. 54, pp. 011001, 2015
    [3] Jie Hu, Silvia Lenci, Steve Stoffels, Brice De Jaeger, Guido Groeseneken, and Stefaan Decoutere, " Leakage-current reduction and improved on-state performance of Au-free AlGaN/GaN-on-Si Schottky diode by embedding the edge terminations in the anode region," Phys. Status Solidi C11, pp. 862–865, 2014.
    [4] Wanjun Chen, King-Yuen Wong, Wei Huang, and Kevin J. Chen, "High-performance AlGaN/GaN lateral field-effect rectifiers compatible with high electron mobility transistors," Applied Physics Letters, vol. 92, pp. 253501, 2008.
    [5] J.-G. Lee, B.-R. Park, C.-H. Cho, K.-S. Seo, and H.-Y. Cha, "Low Turn-On Voltage AlGaN/GaN-on-Si Rectifier With Gated Ohmic Anode," IEEE Electron Device Letters, vol. 34, pp. 214-216, 2013.
    [6] P. Waltereit, S. Müller, K. Bellmann, C. Buchheim, R. Goldhahn, K. Köhler, L. Kirste, M. Baeumler, M. Dammann, W. Bronner, R. Quay, and O. Ambacher, "Impact of GaN cap thickness on optical, electrical, and device properties in AlGaN/GaN high electron mobility transistor structures," Journal of Applied Physics, vol. 106, p. 023535, 2009.
    [7] L. Shenghui, D. Jiangfeng, L. Qian, Y. Qi, Z. Wei, X. Jianxin, and Y. Mohua, "Analytical charge control model for AlGaN/GaN MIS-HFETs including an undepleted barrier layer," Journal of Semiconductors, vol. 31, p. 094004, 2010.
    [8] O. Ambacher, et al, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” Journal of Applied Physics, Vol.85, pp. 3222 - 3233, 2000.
    [9] Isaac Cohen et al., "Novel 600 V GaN Schottky diode delivering SiC performance at Si prices," presented at the APEC, Austin, TX, 2005.
    [10] Seung-Chul Lee et al., "High Breakdown Voltage GaN Schottky Barrier Diode employing Floating Metal Rings on AlGaN/GaN Hetero-junction " presented at the Proceedings of the 17th International Symposium on Power Semiconductor Devices & IC's Santa Barbara, CA, 2005.
    [11] Y. Zhou, M. Li, D. Wang, C. Ahyi, C.-C. Tin, J. Williams, M. Park, N. M. Williams, and A. Hanser, "Electrical characteristics of bulk GaN-based Schottky rectifiers with ultrafast reverse recovery," Applied Physics Letters, vol. 88, p. 113509, 2006.
    [12] G.-Y. Lee, H.-H. Liu, and J.-I. Chyi, "High-Performance AlGaN/GaN Schottky Diodes With an AlGaN/AlN Buffer Layer," IEEE Electron Device Letters, vol. 32, pp. 1519-1521, 2011.
    [13] J. W. Johnson, A. P. Zhang, L. Wen-Ben, R. Fan, S. J. Pearton, S. S. Park, Y. J. Park, and C. Jenn-Inn, "Breakdown voltage and reverse recovery characteristics of free-standing GaN Schottky rectifiers," IEEE Transactions on Electron Devices, vol. 49, pp. 32-36, 2002.
    [14] G. T. Dang, A. P. Zhang, F. Ren, X. A. Cao, S. J. Pearton, H. Cho, J. Han, J. I. Chyi, C. M. Lee, C. C. Chuo, S. N. G. Chu, and R. G. Wilson, "High voltage GaN Schottky rectifiers," IEEE Transactions on Electron Devices, vol. 47, pp. 692-696, 2000.
    [15] Seung-Chul Lee et al., "A new vertical GaN Schottky barrier diode with floating metal ring for high breakdown voltage," in Power Semiconductor Devices and ICs, 24-27 May 2004, pp. 319 - 322.
    [16] Y.-M. Hsin, T.-Y. Ke, G.-Y. Lee, J.-I. Chyi, and H.-C. Chiu, "A 600 V AlGaN/GaN Schottky barrier diode on silicon substrate with fast reverse recovery time," physica status solidi (c), vol. 9, pp. 949-952, 2012.

    QR CODE
    :::