| 研究生: |
曾文毅 WEN-I TSENG |
|---|---|
| 論文名稱: |
不同輸砂濃度及基準水面條件下之沖積扇形態分析 |
| 指導教授: | 周憲德 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 沖積扇 、基準水面 、頂積層坡度 、輸砂濃度 |
| 外文關鍵詞: | alluvial fans, base level, top-set slope, sediment concentration |
| 相關次數: | 點閱:5 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來因全球氣候變遷導致高降雨強度事件頻率增加,而高降雨強度事件容易引發邊坡崩塌、土石流等事件,對於民眾及基礎建設造成嚴重損失。本研究使用小尺度三維渠槽進行實驗,藉由改變輸砂濃度及基準水面觀察沖積扇(alluvial fans)形態之變化,並搭配相機及雷射光,對沖積扇縱剖面、橫剖面、平面堆積形態、等高線、頂積層(topset)及前積層(foreset)角度以及流速剖面進行分析與討論。
控制參數包括顆粒粒徑、平台積水深及輸砂濃度,此輸砂濃度以水沙比(n)表示,水沙比為水入流量(Q_W)與顆粒入流量(Q_S)兩項比值。研究結果顯示頂積層角度主要隨平台積水深或水沙比增加而減少,成反比之關係;前積層角度隨平台積水深或水沙比增加而增加,成正比之關係。在有積水深實驗條件下,沖積扇形態明顯會因水體阻力而限制其堆積範圍;縱剖面形態會隨著平台積水深或水沙比增加而偏向於直線;橫剖面形態則是依不同斷面位置有所不同。但隨著積水深增加各組沖積扇實驗形態相似性也隨之提高。
關鍵字:沖積扇、基準水面、頂積層坡度、輸砂濃度
The depositional process of debris-flow fans is experimentally explored in this study. The fan slopes were controlled by particle sizes, sediment concentration(i.e., the ratio of sediment discharge (Q_S) to water discharge (Q_W)) and the base-level water depth. Both longitudinal and cross-sectional profiles of alluvial fans were simultaneously measured by using a digital camera, a reflection mirror and multi-laser settings. The top-set angles increases with the increasing sediment concentration, while decreases with the increasing base-level water depth. The longitudinal profile of the alluvial fan is concave when the base-level water is negligible. While the longitudinal profiles become linear, a milder slope for topset and a steeper one for the foreset, when the base-level water exists. The dimensionless cross-sectional profiles show self-similarity characteristics.
Key words: alluvial fans, base level, top-set slope, sediment concentration.
參考文獻
[1] Allen, P.A,and Hovius, N. (1998) “Sediment supply from landslide-dominated catchments: Implications for basin-margin fans„ Basin Research, 10, 19-35.
[2] Bull, W. B (1977) “The alluvial-fan environment„ Progress In Physical Geography, 1,222-270.
[3] Bi, W., Delannay, R., Richard, P., Taberlet, N., and Valance, A. (2005) “Two- and three-dimensional confined granular chute flows: experimental and numerical results„ Journal of Physics: Condensed Matter, 17,S2457-S2480.
[4] Bi, W., Delannay, R., Richard, P.,and Valance, A. (2006) “Experimental study of two-dimensional, monodisperse, frictional-collisional granular flows down an inclined chute„ Physics of fluids, 18,123-302.
[5] Clarke, L., T. A. Quine, and A. Nicholas (2010) “An experimental investigation of autogenic behaviour during alluvial fan evolution„ Geomorphology,115(3-4), 278-285.
[6] Densmore, A. L., Allen, P. A., and Simpson, G.(2007)“Development and response of a coupled catchment fan system under changing tectonic and climatic forcing„ Journal of Geophysical Research, v. 117.
[7] Hovius, N., Stark, C.P., Chu, H.T. and Lin, J.C.(2000) “Supply and removal of Sediment in a landslide-dominated mountain belt:Central Range„Taiwan. Journal of Geology, 108,73-89.
[8] Kenyon, P.M. and Turcotte. D.L.(1985) “Morphology of a delta prograding by bulk sediment transport„Geological Society of America Bulletin, v. 96, 1457-1465.
[9] Kim, W., and Muto, T. (2007) “Autogenic response of alluvial-bedrock transition to base-level variation: Experiment and theory„ Journal of Geophysical Research - Earth Surface, v. 112.
[10] McPherson, J.G., Shanmugam, G. and Moiola, R.J. (1987) “Fan-deltas and braid deltas:Varieties of coarse-grained deltas„ Geological Society of America Bulletin, v. 99, p. 331-340
[11] Parker, G., Paola, C., Whipple, K. X., and Mohrig, D.(1998) “Alluvial Fans Formed by Channelized Fluvial and Sheet Flow. I:Theory„Journal of Hydraulic Engineering, 124,985.
[12] Powell, E., Kim, W., and Muto, T. (2012)“Varying discharge controls on timescales of autogenic storage and release processes in fluvio-deltaic environments:Tank experiments„Journal of Geophysical Research - Earth Surface, v. 117.
[13] Taberlet, N., Richard, p., Valance, A., Losert, W., Pasini, J. M., Jenkins, J. T., et al. (2003) “Superstable Granular Heap in a Thin Channal„ Physical Review Letters, 91,264-301.
[14] Van Dijk, M., Postma, G. and Kleinhans, M.G. (2012) “ Contrasting morphodynamics in alluvial fans and fan deltas:effect of the downstream boundary„Sedimentology, 59, 2125–2145.
[15] Van Dijk, M., Postma, G., and Kleinhans, M.G. (2009) “ Autocyclic behaviour of fan deltas: an analogue experimental study„ Sedimentology, 56, 1569–1589.
[16] 吳俊銓 (2012). 山洪濁流形成沖積扇之實驗研究. 國立中央大學土木工程研究所碩士論文.
[17] 林枏恩 (2013). 土石流形成沖積扇過程之實驗研究. 國立中央大學土木工程研究所碩士論文.
[18] 張瑞津 (1997). 臺灣沖積扇之分布、形態及地形意義. 地質17卷,1-2期,69-93.
[19] 黃郅軒 (2011). 儲槽內顆粒流動與發聲特性之研究. 國立中央大學土木工程研究所碩士論文.
[20] 楊淑君 (1995). 臺灣沖積扇之地形學研究. 國立臺灣師範大學地理學系博士論文.
[21] 齊士崢、宋國城、陳邦禮、謝孟龍、蔡衡、傅炯貴 (1998). 蘭陽溪上游沖積扇的地形演育. 環境與世界,2期,137-150.
[22] 蔡元芳 (1999). 土石流扇狀地形狀特性之研究. 國立成功大學水利及海洋工程研究所博士論文.
[23] 鐘文欣 (2012). 堆積顆粒崩落歷程受坡面及底床條件影響之實驗研究. 國立中央大學土木工程研究所碩士論文.