跳到主要內容

簡易檢索 / 詳目顯示

研究生: 郭盈男
Ying-Nan Guo
論文名稱: 台灣地區地震資料之經驗貝氏分析
指導教授: 樊采虹
Tsai-Hung Fan
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計研究所
Graduate Institute of Statistics
畢業學年度: 89
語文別: 中文
論文頁數: 48
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 則考慮Ogata(1988)的流行病模型(epidemic-type model),將發震
    時間結合了㆞震規模,描述主震和餘震間之關係。並分別利用台
    灣東部和全台早期㆞震資料決定模型參數的先驗分配(prior
    distribution),對台灣東部、西部和全台近期㆞震資料,利用馬可
    夫鏈蒙㆞卡羅 (Markov Chain Monte Carlo) 法衍生近似的聯合後
    驗分配, 進行經驗貝氏分析。最後提供預測㆞震的方法。


    第㆒章 緒論 1 1.1 文獻回顧 ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 1 1.2 研究方法 ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 3 第㆓章 經驗貝氏分析 5 2.1 ㆞震模型 ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 5 2.2 先驗分配 ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 6 2.2.1 先驗分配的形式 ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 6 2.2.2 先驗分配㆗超參數的決定 ﹒﹒﹒﹒﹒﹒﹒﹒﹒ 10 2.3 後驗分配 ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 14 第㆔章 模型診斷 29 3.1 模型診斷 ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 29 3.2 ㆞震預測 ﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒﹒ 30 第㆕章 結論 45

    [1] Berger, J. O. (1985). Statictical Decision Theory and Bayesian
    Analysis. 2nd Ed. New York: Springer-Verlag.
    [2] Betrò, B., and Ladelli, L. (1996). Point process analysis for Italian
    seismic activity. Applied Stochastic Models and Data Analysis. 12,
    75--105.
    [3] Daley, D., and Vere-Jones, D. (1988). An Introduction to the Theory
    of Point Processes. New York: Springer-Verlag.
    [4] Freeman, M. F., and Tukey, J. W. (1950). Transformations related to
    the angular and the sequare root. The Annals of the Mathematical
    statistiscs. 21, 607--611.
    [5] Hawkes, A. G. (1971). Point spectra of some mutually exciting point
    processes. Journal of the Royal Statistical Society. Ser. B, 33,
    438--443.
    [6] Hastings, W. K. (1970). Monte Carlo sampling methods using Markov
    chains and their applications. Biometrika. 57, 97--109.
    [7] Lomnitz, C., and Nava, F. A. (1983). The predictive value of seismic
    gaps. Bulletin of the Seismological Society of America. 73,
    1815--1824.
    [8] Metropolis, N., Rosenbluth, A. W., Teller, A. H., and Teller, E.
    (1953). Equation of state calculations by fast computing machines.
    48
    Journal of Chemical Physics. 21, 1087--1091.
    [9] Ogata, Y. (1988). Statistical models for earthquake occurrences and
    Residual analysis for point processes. Journal of the American
    Statistical Association. 83, 9--27.
    [10] Ogata, Y. (1989). Statistical model for standard seismicity and
    detection of Anomalies by residual analysis. Tectonophysics. 169,
    159--174.
    [11] Papangelou, F. (1972). Integrability of expected increments of point
    processes and related random change of scale. Transactions of the
    American Mathematical Society. 165, 483--506.
    [12] Peruggia, M., and Santner, T. (1996). Bayesian analysis of time
    evolution of earthquakes. Journal of the American Statistical
    Association. 91, 1209--1218.
    [13] Utsu, T. (1961). A statictical study on the occurrence of aftershocks.
    Geophysical Magazine. 30, 521--605.
    [14] Utsu, T. (1970). Aftershocks and earthquake statistics (II)---further
    investigation of aftershocks and other earthquake sequences based
    on a new classification of earthquake sequences. Journal of the
    Faculty of Science. Hokkaido University, Ser. VII (Geophsics), 3,
    197--266.
    [15] 林志勳 (1999). 花蓮㆞區㆞震資料之經驗貝氏分析. ㆗央大學統

    QR CODE
    :::