跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張哲維
Zhang, Zhe-Wei
論文名稱: 混和冷卻對太陽能模組效率之影響及熱應力分析
指導教授: 張瑞宏
Chang, Jui-Hung
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 116
中文關鍵詞: 太陽能模組混和冷卻熱應力
相關次數: 點閱:26下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要分為兩個部分。第一部分探討太陽能模組在不同風速條件下,對模組峰值溫度的影響及其降溫效率;第二部分則分析熱傳結果對有無鋁框模組所造成的熱應力差異。
    在太陽能模組的熱傳分析中,研究結果顯示水冷卻對模組降溫具有顯著效果,而風的存在也能有效減緩模組溫度的上升,且隨著風速增加,降溫效果愈加明顯。當水冷卻系統結合不同風速條件時,可進一步提升模組的整體降溫效率。
    在熱應力分析部分,研究著重於比較有無鋁框模組在相同熱載重下的熱應力峰值及其分布情形。結果顯示,有鋁框模組的拉伸應力顯著低於無鋁框模組,且在施加冷卻條件下,拉伸應力可維持在電池不易損壞的安全範圍內。此外,有鋁框模組的應力峰值分布區域亦較無鋁框模組小。由此可見,在冷卻過程中,鋁框能有效約束模組變形,進而提升模組的穩定性及使用壽命。


    This study is mainly divided into two parts. The first part investigates the effects of different wind speeds on the peak temperature of solar modules and their cooling efficiency. The second part analyzes the thermal stress differences caused by the presence or absence of an aluminum frame based on the thermal analysis results.
    In the thermal analysis of solar modules, the results indicate that water cooling has a significant effect on reducing the module temperature. Additionally, airflow effectively slows down the temperature rise of the module, and the cooling effect becomes more pronounced as wind speed increases. When the water cooling system is combined with varying wind speeds, the overall cooling efficiency of the module is further enhanced.
    Regarding the thermal stress analysis, the focus is on comparing the peak thermal stresses and their distribution in modules with and without an aluminum frame under the same thermal load. The results show that the tensile stress in modules with an aluminum frame is significantly lower than that in frameless modules. Moreover, under cooling conditions, the tensile stress can be maintained within a safe range that prevents damage to the solar cells. Furthermore, the stress peak distribution area in framed modules is considerably smaller than in frameless ones. These findings indicate that during the cooling process, the aluminum frame effectively constrains module deformation, thereby improving the stability and service life of the solar module.

    摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 研究主題與方法 3 1.4 論文內容 4 第二章 背景理論與文獻回顧 5 2.1 太陽能發電模組發電原理及結構 5 2.1.1 模組發電原理 5 2.1.2 基礎構造 6 2.1.3 太陽能模組種類 8 2.1.4 太陽能模組支撐類型 10 2.2 模組效能減損因素 12 2.2.1 溫度對於發電效率之影響 14 2.2.2 熱應力對於太陽能模組之損毀 15 2.3 太陽能模組相關文獻回顧 16 2.3.1 被動冷卻方式文獻回顧 17 2.3.2 主動冷卻方式文獻回顧 18 2.3.3 混合式與新興冷卻技術 21 2.3.4 機械可靠度文獻回顧 22 2.3.5 模組熱應力文獻回顧 24 2.4 太陽能模組標準測試準則文獻回顧 25 第三章 理論與數值分析方法 26 3.1 前言 26 3.2 熱傳分析 26 3.2.1 熱傳導 27 3.2.2 熱對流 31 3.2.3 熱輻射 33 3.3 熱致應力 34 3.4 有限元素法 35 3.5 風載重施加 38 3.6 溫度對太陽能板最功率輸出影響 39 3.7 水平輻照度 42 第四章 太陽能模組在相異冷卻系統峰值平行驗證及最大功率換算 43 4.1 太陽能模組之水流冷卻系統 43 4.1.1 幾何模型之尺寸與材料參數 44 4.1.2 網格模型 46 4.1.3 邊界及初始條件 47 4.1.4 相異太陽輻射之熱傳平行驗證 49 4.2 太陽能模組在不同風速下之峰值溫度平行驗證 54 4.2.1 幾何模型之尺寸與材料參數 54 4.2.2 網格模型 56 4.2.3 邊界及初始條件 56 4.2.4 相異風速之熱傳平行驗證 58 4.3 混和式冷卻(水冷及風冷)之熱傳平行驗證 62 4.3.1 幾何模型之尺寸與材料參數 62 4.3.2 網格模型 64 4.3.3 邊界及初始條件 64 4.3.4 混和冷卻熱傳分析 65 4.4 太陽能模組最大功率換算 67 第五章 太陽能模組之熱致應力 70 5.1 雙玻璃模組風載重機械應力驗證 70 5.1.1 幾何模型之尺寸與材料參數 70 5.1.2 網格模型 72 5.1.3 邊界及初始條件 73 5.1.4 極限風載重下相異支撐間距主應力平行驗證 74 5.2 混和冷卻模組機械應力驗證 76 5.2.1 模型幾何與材料參數 76 5.2.2 網格模型 77 5.2.3 邊界與初始條件 78 5.2.4 應力分析結果 80 5.3 有鋁框之混和冷卻模組機械應力驗證 81 5.3.1 幾何模型之尺寸與材料參數 82 5.3.2 網格模型 82 5.3.3 邊界與初始條件 83 5.3.4 應力分析結果 83 5.4 無鋁框混和冷卻模組之熱應力 84 5.4.1 邊界及初始條件 85 5.4.2 熱應力分析結果 85 5.5 鋁框混和冷卻模組之熱應力 88 5.5.1 熱應力分析結果 89 5.5.2 熱應力在相異風速下歷時圖 91 5.6 鋁框有無之應力比較 91 第六章 結論與建議 93 6.1 結論 93 主題一:太陽能模組冷卻方式熱傳分析 93 主題二:太陽能模組機械應力驗證與熱應力分析 94 6.2 建議 95 主題一:太陽能模組冷卻方式熱傳分析 95 主題二:太陽能模組機械應力驗證與熱應力分析 95 參考文獻 97

    [1] R. A. Marques Lameirinhas, J. P. N. Torres, and J. P. de M. Cunha, “A Photovoltaic Technology Review: History, Fundamentals and Applications,” Energies, vol. 15, no. 5, p. 1823, 2022.
    [2] W. Z. Leow, M. I. Yusoff, M. Irwanto, A. A. Razak, S. Ibrahim, and N. S. Zhubir, “Investigation of solar panel performance based on different wind velocity using ANSYS software,” Indones. J. Electr. Eng. Comput. Sci., vol. 1, pp. 456–463, 2016.
    [3] D. J. Yang, Z. F. Yuan, P. H. Lee, and H. M. Yin, “Simulation and experimental validation of heat transfer in a novel hybrid solar panel,” Int. J. Heat Mass Transf., vol. 55, no. 4, pp. 1076–1082, 2012.
    [4] T. Salameh, M. Tawalbeh, A. Juaidi, R. Abdallah, and A.-K. Hamid, “A novel three-dimensional numerical model for PV/T water system in hot climate region,” Renew. Energy, vol. 164, pp. 1320–1333, 2021.
    [5] S. Kajari-Schröder, M. Köntges, and H. Altenbach, “Thermal stress and strain of solar cells in photovoltaic modules,” in Springer, Berlin, Heidelberg, doi:10.1007/978-3-642-1855-2_29.
    [6] M. S. F. M. Azmi et al., “Hybrid Cooling System for Solar Photovoltaic Panel,” J. Phys.: Conf. Ser., vol. 2550, p. 012004, 2023, doi:10.1088/1742-6596/2550/1/012004.
    [7] 陳玠佑, “單片太陽能板支架結構風力分析研究,” 內政部建築研究所,自行研究報告, 2016年9月.
    [8] R. Parthiban and P. Ponnambalam, “An Enhancement of the Solar Panel Efficiency: A Comprehensive Review,” Front. Energy Res., vol. 10, p. 937155, 2022.
    [9] L. M. Shaker et al., “Examining the influence of thermal effects on solar cells: a comprehensive review,” Sustain. Energy Res., vol. 11, no. 6, 2024, doi:10.1186/s40807-024-00100-8.
    [10] SolidWorks, “Heat Transfer Mechanism Explanation,” 2024. [Online]. Available: https://help.solidworks.com/2024/english/SolidWorks/cworks/c_convection.htm. [Accessed: Jul. 5, 2025].
    [11] D. Joshi and J. E. Webb, “Mechanical reliability calculations for the thin specialty glass PV solar panels,” Science and Technology Division, Corning Incorporated, NY, USA, 2019.
    [12] J. A. Duffie and W. A. Beckman, Solar Engineering of Thermal Processes, 4th ed. Wiley, 2013.
    [13] K. S. A. Varshini, H. Rajan, and R. Sankararaman, “Numerical simulation on the effects of ambient velocity and temperature on solar panel efficiency,” IOP Conf. Ser.: Earth Environ. Sci., vol. 850, p. 012030, 2021.
    [14] E. Özkalaya, H. Questc, and A. Gassner, “Three decades, three climates: environmental and material impacts on the long-term reliability of photovoltaic modules,” EES Sol., 2025, doi:10.1039/D4EL00040D.
    [15] Prabhu et al., “Solar photovoltaic cooling using paraffin phase change material: Comprehensive assessment,” 2024.
    [16] PVMars Solar, “350W, 450W, 550W, 650W Solar Panel Efficiency New Technology,” 2024. [Online]. Available: (Accessed Jul. 5, 2025).
    [17] 群創能源, “台灣目前發展太陽能發電的形式?,” 綠能大小事, Aug. 25, 2022. [Online]. Available: https://www.innoluxsolar.com.tw/. [Accessed: Jul. 5, 2025].
    [18] 璟元光電有限公司, “公司官網,” 2025. [Online]. Available: https://www.jingyuansolarframes.com/. [Accessed: Jul. 5, 2025].
    [19] U. Eitner, A. Mondon, and R. Hähnel, “Reliability testing and modeling of solar cells under thermal cycling: Stress and damage evolution,” Sol. Energy Mater. Sol. Cells, vol. 245, p. 112097, 2023.
    [20] E. H. Lee and T. A. Ojo, “Modeling thermo-mechanical stress in photovoltaic modules subjected to accelerated thermal cycling,” Int. J. Energy Res., vol. 44, no. 6, pp. 4901–4913, 2020.
    [21] M. Paggi, M. Corrado, and T. A. Ojo, “Multi-physics modeling of fatigue crack growth in photovoltaic modules subjected to cyclic thermal loading,” Appl. Energy, vol. 264, p. 114693, 2020.
    [22] K. Ross, X. Jiang, M. Alabi, and C. W. Enderlin, “Investigation of Cold Spray as a Dry Storage Canister Repair and Mitigation Tool,” Sandia National Laboratories Technical Report, 2020.
    [23] K. Gautam, “Final Report on Dual Axis Solar Tracking System,” Dept. Mech. Eng., 2020.
    [24] M. A. Green et al., “Solar Cell Efficiency Tables (Version 60),” Prog. Photovolt. Res. Appl., vol. 30, no. 1, pp. 3–12, 2022.
    [25] M. W. Mustafa, M. Y. Hassan, and H. A. Rahman, “Performance enhancement of photovoltaic thermal systems using Al₂O₃ nanofluid and pin-fin heat sinks integrated with phase change materials,” Renew. Energy, vol. 225, pp. 1204–1217, 2024.
    [26] A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature, vol. 515, no. 7528, pp. 540–544, 2024.
    [27] M. Sheikholeslami and A. Najafi, “Thermophysical analysis of hybrid nanofluid-based CPV/T systems using novel geometries and entropy generation theory,” J. Therm. Anal. Calorim., vol. 148, pp. 1221–1237, 2024.
    [28] H. A. Idan, H. K. Kadhom, and S. R. Faraj, “Experimental and numerical investigation of PV panel cooling using ribbed fin heat exchanger and hybrid generation,” Int. J. Heat Technol., vol. 42, no. 4, pp. 430–438, 2024.
    [29] D. N. Lakshmi and S. S. Rao, “Experimental study of solar PV/T panel to increase the energy conversion efficiency by air cooling,” Mater. Today: Proc., vol. 92, no. 1, pp. 309–313, 2023.
    [30] M. Rezaei and S. M. Ghasemi, “Experimental evaluation of the hybrid bifacial cooling of a PV panel in arid weather using channel heat exchanger and impingement flow nozzles,” J. Heat Mass Transf. Res., vol. 10, no. 2, pp. 55–70, 2023. [Online]. Available: https://jhmtr.semnan.ac.ir/article_8641.html.
    [31] L. Martin, L. Dubois, and J. Leroy, “A review of solar hybrid photovoltaic thermal (PV T) collectors and systems,” Prog. Energy Combust. Sci., vol. 97, p. 101072, 2023.
    [32] W. Z. Leow et al., “Effect of water cooling temperature on photovoltaic panel performance by using computational fluid dynamics (CFD),” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 56, no. 1, pp. 133–146, 2019.
    [33] M. A. Green et al., “Solar cell efficiency tables (Version 60),” Prog. Photovolt. Res. Appl., vol. 30, no. 6, pp. 583–591, 2022.
    [34] Clean Energy Reviews, “Most Efficient Solar Panels 2025 — Module Comparison Guide,” 2025. [Online]. Available: https://www.cleanenergyreviews.info/blog/most-efficient-solar-panels.
    [35] 陳奕傑, “用過核燃料乾式貯存密封鋼筒焊接熱致應力參數分析、太陽能板受不同風速之溫度分析與水冷系統模擬,” 國立中央大學,碩士論文, 2024.

    QR CODE
    :::