跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林鴻諭
Hung-Yu Lin
論文名稱: 利用異質孔徑界面增強多孔介質內流體驅替效果之研究
指導教授: 鍾志昂
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 能源工程研究所
Graduate Institute of Energy Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 90
中文關鍵詞: 異質孔徑界面驅替多孔隙介質指狀流動碎形維度空氣注入飽和度
外文關鍵詞: heterogeneous pore-scale boundary, displacement, porous medium, fingering flow, fractal dimension, air injection saturation
相關次數: 點閱:22下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文為利用異質孔徑界面增強低黏度空氣於多孔隙介質驅替高黏度矽油效果之研究。實驗採用一水平線性Hele-Shaw cell系統填充含異質孔徑界面之多孔隙介質,此異質孔徑界面為兩種粒徑玻璃珠組成之多孔隙異構性組合系統,內部充滿高黏度矽油。實驗觀察低黏度空氣推動多孔隙介質內高黏度矽油過程中,發現指狀流動為高黏度流體驅替效果低落之原因。為建立一套增強低黏度流體驅替多孔隙介質內高黏度流體之方法,實驗設計五種粗、細玻璃珠所占長度比例不同之多孔隙異構性組合,分別為1:0、3:1、1:1、1:3、0:1,分析不同空氣注入流率對於不同粒徑介質內部高黏度流體驅替之結果。
    兩種注入流率實驗條件結果顯示,指形流動受到異質孔徑邊界的阻擋可增強粗顆粒區域玻璃珠內高黏度矽油之驅替效果,並受流率降低影響,指狀流動遂發展為碎形維度較大之指形結構,如結構較大之黏性指形、毛細指形,可增加被驅替流體面積。比較此五組多孔隙異構性組合,發現若縮短粗顆粒區域所占顆粒填充長度,可提高此被驅替流體面積所占百分比,換言之,即可達到較高的空氣注入飽和度。


    This research presents an experimental study of enhancing fluid displacement through porous media with a heterogeneous pore-scale boundary, where the displaced fluid (silicone oil) was more viscous than the displacing fluid (air). We used a horizontal linear Hele-Shaw cell with two different sizes of glass beads to model the porous media with different pore sizes. Previous research has shown that a fluid cannot uniformly displaces another relatively more viscous fluid through a porous medium, leaving a finger-like flow pattern in the medium. In order to create a system for more effectively displacing viscous fluid through a porous medium, we proposed a heterogeneous porous medium model. Five different length ratios (1:0, 3:1, 1:1, 1:3, 0:1) of coarse glass bead region to fine glass bead region were considered.
    Using this heterogeneous porous medium model, fluid displacement experiments with different air injection rates were performed. Our results showed that much more viscous silicone oil in the coarse glass bead region could be displaced by the less viscous air because the heterogeneous pore-scale boundary prevented the finger-like flow from directly invading into the fine glass bead region. With lower air injection rates the viscous finger had higher fractal dimensions, which could also increase the displaced fluid volume. Comparing the results from the five heterogeneous configurations, we found that shortening the length of the coarse glass bead region increased the ratio of displaced fluid volume in the porous medium, resulting in higher air injection saturation results.

    摘要 I Abstract II 表目錄 VI 圖目錄 VII 符號說明 XIV 第一章 緒論 1 1-1 研究動機 1 1-2 文獻回顧 3 1-2-1 純流體指形不穩定現象 3 1-2-2 多孔隙介質指形流動 4 1-3 研究目的 8 第二章 實驗系統 19 2-1 Hele-Shaw cell系統 19 2-2 空氣注入系統 19 2-2-1 注射泵 20 2-2-2 壓力量測系統 20 2-2-3 安捷倫資料擷取系統 21 2-3 背光源系統 21 2-4 實驗方法 22 2-4-1 不同長度比例之異構性多孔隙組合 22 2-4-2 推估滲透度值(permeability) 23 2-4-3 推估孔隙率(porosity) 24 2-4-4 空氣注入飽和度 24 2-4-5 影像觀測裝置 25 2-4-6 碎形維度分析(fractal dimension analysis) 26 第三章 結果與討論 36 3-1 量測毛細閥壓力(Capillary threshold pressure) 36 3-1-1 多孔隙介質流動態壓力(Dynamic pressure in porous medium) 36 3-1-2 壓力分析方式 37 3-1-3 實驗結果 37 3-2 不同長度比例之異構性多孔隙組合 38 3-2-1 壓力分析方式 38 3-2-2 流體驅替結果 39 3-2-3 壓力分析結果 45 3-2-4 消耗功 46 3-2-5 碎形維度 47 第四章 結論與未來展望 68 4-1 結論 68 4-2 未來展望 69 參考文獻 70

    Al-Housseiny, T. T., Tsai, P. A., Stone, H. A. "Control of interfacial instabilities using flow geometry." Nature Physics, Vol. 8, pp. 747-750, 2012.
    Al-Housseiny, T. T and Stone, H. A. "Controlling viscous fingering in tapered Hele-Shaw cells." Physics of Fluids, Vol. 25(9), pp. 092102, 2013.
    Bear, J., Dynamics of Fluids in Porous Media., Drainage and Imbibition (pp. 449-451), New York, Reprint of the American Elsevier, 1972.
    Cinar, Y., Neal, P. R., Allinson, W. G., Sayers, J., "Geoengineering and Economic Assessment of a Potential Carbon Capture and Storage Site in Southeast Queensland, Australia." Society of Petroleum Engineers, Vol. 12(5), pp. 660 – 670, 2009.
    Dawe, R. A., Caruana, A., Grattoni C. A., "Immiscible displacement in cross-bedded heterogeneous porous media." Transport in porous media, Vol. 87(1), pp. 335-353, 2011.
    Dawe, R. A., Caruana, A., Grattoni, C. A., "Microscale Visual Study of End Effects at Permeability Discontinuities." Transp. Porous Media, Vol. 86, pp. 601-616, 2011.
    Degregoria, A. J., Schwartz, L. W., "A boundary-integral method for two-phase displacement in Hele-Shaw cells." Journal of Fluid Mechanics, Vol. 164, pp. 383-400, 1986.
    Dullien, F. A. L., Porous Media: Fluid Transport and Pore Structure., Porosities and Coordination Number(pp. 73), San Diago, California, 1992.
    Furuberg, L., Maløy J. K., Feder J., "Intermittent behavior in slow drainage." Physical review E, Vol. 53, pp. 966-977, 1996
    Hill, S., "Channeling in Packed Colums." Chemical Engineering Science 1: 247-253, 1952.
    Islam, A., Chevalier, S., Salem I. B., Bernabe Y., Juanes R., Sassi, M., "Characterization of the crossover from capillary invasion to viscous fingering to fracturing during drainage in a vertical 2D porous medium." International Journal of Multiphase Flow, Vol. 58, pp. 279-291, 2014.
    Kopf‐Sill, A. R., Homsy, G. M., "Narrow fingers in a Hele-Shaw cell." Physics of Fluids, Vol. 30(9), 1987.
    Lake, L. W., Enhanced Oil Recovery. Englewood Cliffs, N.J: Prentice Hall, 1989.
    Laroussi, C., Backer, L.W., "Relations between geometrical properties of glass beads media and their main hysteresis loops." Soil Science Society of America Journal, Vol. 43, pp. 646–650, 1979.
    Lenormand, R., "Pattern growth and fluid displacements through porous media." Physica A: Statistical Mechanics and its Applications, Vol. 140(1-2), pp. 114-123, 1986.
    Lenormand, R., Touboul, E., Zarcone, C., "Numerical models and experiments on immiscible displacements in porous media." Journal of Fluid Mechanics, Vol. 189, pp. 165-187, 1988.
    Liu, T.-L., Pan, C., "Visualization and back pressure analysis of water transport through gas diffusion layers of proton exchange membrane fuel cell." Journal of power sources, Vol. 207, pp. 60-69, 2012.
    Løvoll, G., Méheust, Y., Toussaint, R., Schmittbuhl, J., Måløy, K. J., "Growth activity during fingering in a porous Hele-Shaw cell." Physical Review E, Vol. 70(2), 2004.
    Løvoll, G., Jankov, M., Måløy, K. J., Toussaint, R., Schmittbuhl, J., Schäfer, G., Méheust, Y., "Influence of viscous fingering on dynamic saturation-pressure curves in porous medium." Transport in porous media, Vol. 86(1), pp. 305-324, 2011.
    Pihler-Puzovic´, D., Illien, P., Heil, M., Juel, A., "Suppression of Complex Fingerlike Patterns at the Interface between Air and a Viscous Fluid by Elastic Membranes." Physical review letters, Vol. 108(7), 2012.
    Paterson, L., 1981, "Radial fingering in a Hele Shaw cell." Journal of Fluid Mechanics, Vol. 113, pp. 513- 529.
    Saffman, P. G. and Taylor, G., "The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid." Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, Vol. 245, pp. 312- 329, 1958.
    Stokes, J. P., Weitz, D. A., Gollub, J. P., Dougherty, A., Robbins, M. O., Chaikin, P. M. and Lindsay, H. M. "Interfacial stability of immiscible displacement in a porous medium." Physical review letters, Vol. 245, 57, pp. 1718- 1721, (1986).
    Zhang C., O., M., Grate, J. W., Wietsma, T. W., and Warner M. G. "Liquid CO2 displacement of water in a dual-permeability pore network micromodel." Environmental Science & Technology, Vol. 45(17), pp. 7581-7588, 2011.

    QR CODE
    :::