跳到主要內容

簡易檢索 / 詳目顯示

研究生: 傅喬玟
Chiau-Wen Fu
論文名稱: 核殼結構的奈米Cu/Cu2O微粒之自旋極化與弱鐵磁現象
The spin polarization and weak ferromagnetism in core-shell Cu/Cu2O nanoparticles.
指導教授: 李文献
Wen-Hsien Li
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
畢業學年度: 95
語文別: 中文
論文頁數: 73
中文關鍵詞: 自旋極化
外文關鍵詞: spin polarization
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗採用熱蒸鍍法製備數組Cu 奈米微粒,經過氧化後形成
    Cu/Cu2O 奈米微粒,最後採用三組樣品粒徑分別為3.4 nm、2.3 nm 與3.9 nm。並使用物理特性量測系統(Physical property measurement system)量測其磁性,利用朗之萬函數(Langevin function)加上一線性項擬合實驗,此線性項為順磁與反磁一起貢獻的結果,進而分析其磁性。
    在塊材的銅與氧化亞銅皆為反磁性,但此實驗發現在低磁場部分
    由鐵磁性表現,高磁場則為銅與氧化亞銅共同表現的現象,當溫度升高時反磁現象越明顯,不過當Cu2O 變多時反而是使反磁性降低。由此也可推測出核內的銅在奈米尺度下能為反磁性,但氧化亞銅則與塊材實的磁性有所不同。在磁矩與溫度的關係上,則發現磁矩排列隨溫度上升而變大的特性,μP ~ kBT。而造成這些與塊材磁性相異的原因,推測乃因表面電子自旋極化與Cu/Cu2O 部分氧缺陷所造成。


    Copper nanoparticles were fabricated by the thermal evaporation method. A series of copper nanoparticles were oxided to form core-shell structure. The diameters of 3.4 nm, 2.3 nm and 3.9 nm Cu/Cu2O nanoparticles were determined by atomic force microscope images.
    We observe the spin polarization in Cu/Cu2O fine particles. The applied magnetic field dependency of magnetization (M-H curve) can be described by using Langevin function. And we also find two magnetic
    components in Cu/Cu2O nanoparticles at low temperatures. We can find that the fitting parameters μp increase with increasing temperature. According to ferromagnetic component in M-H curves and remanence, the ferromagnetic spin polarization of Cu/Cu2O nanoparticles is observed.

    論文摘要 ………………………………………………………………Ⅰ Abstract…………………………………………………………………Ⅱ 致謝 ……………………………………………………………………Ⅲ 目錄 ……………………………………………………………………Ⅳ 圖目 ……………………………………………………………………Ⅵ 表目 ……………………………………………………………………Ⅸ 第一章 序論……………………………………………………………1 1-1塊材銅與氧化亞銅的基本物理特性 ……………………1 1-2奈米材料的特性 …………………………………………3 1-3研究動機 …………………………………………………5 第二章 樣品製作與實驗儀器介紹……………………………………6 2-1 奈米銅微粒的備製………………………………………6 2-2 實驗儀器介紹……………………………………………9 2-3 Cu/Cu2O比例分析與殼層厚度計算……………………15 2-4 AFM粒徑分析…………………………………………20 2-5 X光繞射峰粒徑分析 …………………………………24 第三章 實驗數據分析與探討 ………………………………………28 3-1 數據分析與理論擬合……………………………………28 3-2 Cu/Cu2O奈米微粒磁性探討 ……………………………43 3-3 擬合參數D隨Cu2O變化的探討 ………………………50 第四章 結論……………………………………………………………57 參考文獻 ………………………………………………………………59

    [1] J Ramirez-Ortiz, T Ogura, J Medina-Valtierra et al. Applied Surface Science, 2001, 174: 177184.
    [2] P E De Jongh, D Vanmaekelbergh, J J Kelly. J. Elect. Soc., 2000, 147 (2): 486~489.
    [3] 羅吉宗、戴明鳳、林鴻明、鄭振宗、蘇程裕、吳育民著,奈米科技導論,全華科技圖書股份有限公司.
    [4]牟中原,陳家俊,”奈米材料研究發展,”科學發展月刊,第28卷,第4期,第281-288 頁,2000。
    [5]Y. Yamamoto, T. Miura, M. Suzki, N. Kawamura, H Miyagawa, T. Nakamura, K.Kobayashi, T. Teranishi, and H. Hori, Phys. Rev. Latt. 93, 116801 (2004)
    [6]S. Y. Wu, W. -H. Li
    [7]V. R. Palkar, P. Ayyub, S. Chattopadhay, and M. Multani, Phys. Rev. B
    53, 2167 (1996).
    [8] R. Espiau de Lamaestre and H. Bernas, “Significance of lognormal nanocrystal size distributions,” Phys. Rev. B 73, 125317 (2006)
    [9] E. Limpert, W. A. Stahel, and M. Abbt, “Log-normal Distributions across the Sciences: Keys and Clues,” BioScience 51, 341 (2001)
    [10]王進威,擬合X光繞射峰型判定奈米微粒分末的粒徑分佈,中央大
    學碩士論文 (2006)
    [11] 近角聰信撰,張煦、李學養合譯,聯經出版社(1982)
    [12] S. H. Kilcoyne, R. Cywinski, J. Magn. Magn. Mater. 140, 1446 (1995)
    [13] P. Allia, M. Coission, P. Tiberto, F. Vinai, J. Magn. Magn. Mater. 226, 1904 (2001)
    [14] I.S. Elfimov, S. Yunoki, and G.A. Sawatzky, Phys. Rev. Lett. 89, 216403
    [15] Manoj K. Harbola and Viraht Sahni, Phys. Rev. B 37, 745 (1987)
    [16] V. Shni, K. –P. Bohnen, Phys. Rev. B 31, 7651 (1984)
    [17] Steen Morup, Cathrine Frandsen, Phys. Rev. Lett. 92, 217201 (2004)
    [18] A. Punnoose, H. Magnone, M. S. Seehra, Phys. Rev. B 64, 174420 (2001)
    [19] 林裕祥,奈米氧化亞銅微粒的氧化缺陷與自旋極化,中央大學碩士論文 (2007)

    QR CODE
    :::