跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張德宏
Te-Hung Chang
論文名稱: 自我複製結構膜之設計、製作與應用
Design, fabrication and application ofAutocloned thin films
指導教授: 李正中
Cheng-Chung Lee
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 97
語文別: 中文
論文頁數: 81
中文關鍵詞: 光子晶體自我複製技術電子槍蒸鍍奈米小球
外文關鍵詞: autocloned, photonic crystal, nanosphere, E-beam gun
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之自我複製技術有別於常用的濺鍍法,使用電子束蒸鍍(E-beam gun evaporation)與離子源助鍍(ion-assisted deposition)系統,來製作自我複製結構膜,此系統可增加自我複製結構膜的製程速度與大面積製作。
    本論文研究並探討自我複製技術(autocloning technique)如何應用在週期性結構膜(periodic structural films)上,自我複製式技術主要在週期性基板鍍上高低折射率材料,在一定的製程條件下,多層膜可維持週期性的結構,而形成鋸齒狀結構的光子晶體(photonic crystal)。單層的鋸齒狀結構形成的機制,可利用蝕刻與再沉積技術的模擬方法(simulation method for etching and redeposition technologies)來模擬單層週期性結構膜(adjusting layer)表面形貌的變化,用來調整並控制自我複製結構膜的形狀,得到我們所預期的單層週期性結構膜。接著再利用多層膜技術,調整沉積、蝕刻與再沉積速率,來達到多層的鋸齒狀結構。
    在元件的設計上,我們利用有限時域差分法(FDTD)為基礎來模擬自我複製式結構膜層的光子能隙大小與位置,並建立一套用來設計光子晶體的模型,以及利用此模擬結果來設計二維偏振分光鏡(PBS),並成功製鍍出2D autocloned-type PBS,P/S偏振效應在波長1100 nm-1300 nm的平均比值達到139。形狀結構的quality在厚度為3 um也達到0.8以上,6 um也達到0.7以上,8 um也達到0.6以上。此外,更進一步分析偏振片的模擬與實驗值的差異性。此偏振分光鏡主要工作波長在近紅外線區,適用於生物醫學應用。


    Autocloning technique is one of the fabrication methods to produce the photonic crystals and periodic structural films. The process began with the periodic corrugation pattern on a substrate. We fabricated the photonic crystals after the deposition of stacks by using an E-beam gun evaporation with ion-assisted deposition on the periodic corrugation patterns of substrates. Two kinds of dielectric films, such as Ta2O5 and SiO2, are stacked alternately on the substrate by thin-film deposition and sputter etching to form a zigzag multilayer coating. The surface evolution of the first layer, adjusting layer, depended on the etching and redeposition effects. The numerical simulation of the etching and redeposition processes was used to regulate and control the shape of the adjusting layer of the photonic crystals.
    We also design a 2D Photonic-crystal Polarization Filter with Dual-band and Wide Working Wavelength Range. The fabrication of the photonic-crystal polarization filter is based on an autocloning method which integrated the techniques of lithography and thin film deposition. We also analyzed the thickness ratio effect, wavy structure angle effect and anti-reflection effect on the PBS by FDTD. The photonic bandgap has been achieved by adjusting different structural parameters. The optimized ratio of thickness has been calculated by adjusting different thicknesses of the materials and the different angles of the wavy structures. The optimized structural parameters for PBSs was designed and AR coating was used to reduce the ripples. PBS made using 2D PhCs with wide working wavelength range about 200 nm in 1100 nm-1300 nm and achieved average P/S ratio 139 in 1100-1300 nm. The quality of Autocloning structure can be better than 0.8 at thickness ~3 um, 0.7 at thickness ~6 um, and 0.6 at thickness ~8 um. The results of the numerical simulation and the experimental results both show that the bandgap and wavelength range performed very well after the deposition of multilayers with appropriate IAD parameters.

    中文摘要.................................................................................................................................. V 英文摘要.................................................................................................................................VI 誌謝....................................................................................................................................... VII 圖目錄.....................................................................................................................................IX 表目錄.....................................................................................................................................XI 第一章 序論........................................................................................................................1 1-1 背景.............................................................................................................................1 1-2 研究目的.....................................................................................................................3 1-3 本文架構.....................................................................................................................4 第二章 週期性結構膜之光學理論....................................................................................5 2-1 等效介質理論(effective-medium theory) ................................................................5 2-2 嚴格耦合波分析(rigorous coupled-wave analysis; RCWA)..................................6 2-3 有限時域差分法(Finite-Difference Time-Domain ,FDTD)..................................10 第三章 自我複製式結構膜之設計..................................................................................14 3-1 結構膜堆角度與厚度比例效應...............................................................................15 3-2 相同膜層厚度下不同週期之影響...........................................................................20 3-3 增加高低折射率材料厚度之影響...........................................................................22 3-4 抗反射膜(Anti-Reflection coating)之設計............................................................24 3-5 偏振分光鏡(Polarization beam splitter; PBS)之設計..........................................25 第四章 自我複製結構膜成膜機制..................................................................................29 4-1 蝕刻作用於結構膜表面之機制...............................................................................31 4-2 沉積作用於結構膜表面之機制...............................................................................34 4-3 蝕刻作用於結構膜表面之模擬分析.......................................................................35 4-4 沉積作用於結構膜表面之模擬分析.......................................................................42 第五章 自我複製結構膜之製作與量測..........................................................................47 5-1 製作流程...................................................................................................................47 5-2 實驗儀器...................................................................................................................48 5-3 量測儀器...................................................................................................................50 第六章 調整層..................................................................................................................53 6-1 光柵深度效應...........................................................................................................53 6-2 離子源電壓效應.......................................................................................................55 6-3 蝕刻時間效應...........................................................................................................57 第七章 自我複製結構膜元件..........................................................................................60 7-1 二維多層結構膜的製鍍...........................................................................................60 7-1-1 基板製作.......................................................................................................60 7-1-2 偏振片之多層膜堆製鍍...............................................................................63 7-2 三維多層結構膜的製鍍...........................................................................................65 7-2-1 奈米小球製作二維週期結構基板...............................................................65 7-2-2 奈米小球應用於III-V 族太陽能電池.........................................................67 7-2-3 三維光子晶體之製作...................................................................................72 第八章 結論與未來工作..................................................................................................75 參考文獻.................................................................................................................................77 論文著作.................................................................................................................................81

    [1] E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics", Phys. Rev. Lett., 58 (1987) 2059.
    [2] John, “Strong localization of photons in certain disordered dielectric superlattices”, Phys. Rev. Lett. 58 (1987) 2486.
    [3] B. Gralak, G. Tayeb and S. Enoch, “Morpho butterflies wings color modeled with lamellar grating theory”, Opt.Express 9 (2001) 567.
    [4] A. R. Parker, R. C. McPhedran, D. R. McKenzie, L. C. Botten and N. P. Nicorovici., “Photonic engineering: Aphrodite''s iridescence”, Nature 409 (2001) 36.
    [5] J. Zi, X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, and R. Fu, “Coloration strategies in peacock feathers”, PNAS 100 (2003) 12576.
    [6] P. Vukusic and J. R. Sambles, “Photonic structures in biology”, Nature 424 (2003) 852.
    [7] 欒丕綱,陳啟昌,光子晶體─從蝴蝶翅膀到奈米光子學,第一章,初版,五南圖書出版公司,台北市,2-31,2006。
    [8] S. Kawakami, O. Hanaizumi, T. Sato, Y. Ohtera, T. Kawashima, N. Yasuda, Y. Takei, and K. Miura, “Fabrication of 3D photonic crystals by autocloning and its applications”, Electron. and Commun. in Japan Part II-Electronics 82 (1999) 43.
    [9] S. Kawakami, T. Sato, K. Miura, Y. Ohtera, T. Kawashima, and H. Ohkubo, “3-D Photonic-Crystal Heterostructures: Fabrication and In-Line Resonator”, IEEE Photon. Technol. Lett. 15 (2003) 816.
    [10] B. Dayal, N. Kitabayashi, T. Miyamoto, and F. Koyama, T. Kawashima and S. Kawakami, “Polarization control of 1.15 ?m vertical-cavity surface-emitting lasers using autocloned photonic crystal polarizer”, Appl. Phys. Lett. 91 (2007) 041110.
    [11] A. Mehta, J. D. Brown, P. Srinivasan, R. C. Rumpf, and E. G. Johnson, “Spatially polarizing autocloned elements”, Opt.Lett. 32 (2007) 1935.
    [12] Y. Ohtera, T. Onuki, Y. Inoue, and S. Kawakami, “Multichannel Photonic Crystal Wavelength Filter Array for Near-Infrared Wavelengths”, J. Lightwave Technol. 25 (2007) 499.
    [13] M. Shirane, A. Gomyo, K. Miura, Y. Ohtera, H. Yamada, and S. Kawakami, “Optical Add–Drop Multiplexers Based on Autocloned Photonic Crystals”, IEEE J. Sel. Commun. 23 (2005) 1372.
    [14] T. H. Chang, S. H. Chen and C. C. Lee, H. L. Chen, "Fabrication of autocloned photonic crystals using electron-beam guns with ion-assisted deposition", Thin Solid Films 516 (2008) 1051.
    [15] T. H. Chang, S. H. Chen, C. H. Chan, C. C. Chen, C. C. Lee,“Fabrication of 3-Dimension Photonic Crystal Using Self Assembly and Autocloning Technologies”, Opt. Interference Coating, 10th Topical meeting, June 3-8, MD2, (2007).
    [16] T. Sato, Y. Ohtera, N. Ishino, K. Miura, and S. Kawakami, “In-Plane Light Propagation in Ta2O5/SiO2 Autocloned Photonic Crystals”, IEEE J. Quantum Electron. 38 (2002) 904.
    [17] Y. Ohtera, K. Miura, T. Sato, T. Kawashima, S. Kawakami, “Waveguide and guided-wave devices consisting of heterostructured photonic crystals”, Opt. Eng. 43 (2004) 1022.
    [18] Y. Ohtera, T. Kawashima, Y. Sakai, T. Tamamura, A. Ozawa, and S. Kawakami, “Fabrication of lattice-modulated photonic crystals and their application to multichannel wavelength selective filters,” in Proc. 2000 Society Conf. SC-4-14 (2000).
    [19] S. Kawakami, T. Sato, K. Miura, Y. Ohtera, T. Kawashima, H. Ohkubo, “3-D Photonic-Crystal Heterostructures: Fabrication and In-Line Resonator”, IEEE Photon. Technol. Lett. 15 (2003) 816.
    [20] D. E. Aspnes, “Local-field effects and effective-medium theory: A microscopic perspective”, Am. J. Phys. 50 (1982) 704.
    [21] J. S. Chen, S. Chao, J. S. Kao, H. Niu, and C. H. Chen, "Mixed films of TiO2–SiO2 deposited by double electron-beam coevaporation", Appl. Opt. 35 (1996) 90.
    [22] L. Ward, The optical constants of bulk materials and films, chap.8, IOP publishing Ltd, England, 236-262, 1998.
    [23] M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings", J. Opt. Soc. Am. A 12 (1995) 1068.
    [24] 張高德,廣義光子晶體元件之研究與分析,國立中央大學光電科學研究所博士論文,2007。
    [25] A. Taflove, Computational Electrodynamics, Artech House, Boston, (1995).
    [26] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media”, IEEE Trans. Antennas Propagat. AP-14 (1996) 302.
    [27] F. Zheng, Z. Chen, and J. Zhang, “A finite-difference time-domain method without the Courant stability conditions,” IEEE Microwave Guided Wave Lett. 9 (1999) 441.
    [28] S. Kawakami, O. Hanaizumi, T. Sato, Y. Ohtera, T. Kawashima, N. Yasuda, Y. Takei, and K. Miura, “Fabrication of 3D Photonic Crystals by Autocloning and Its Applications”, Electron. and Commun. in Japan Part 2 82 (1999).
    [29] 李正中,薄膜光學與鍍膜技術,第十一章,第五版,藝軒圖書出版社,台北市,314-359,2006。
    [30] J. A. Sethian and D. Adalsteinsson, “An overview of level set methods for etching, deposition, and lithography development”, IEEE Trans. Semiconduct. Manufact. 10 (1997) 167.
    [31] I. V. Katardjiev, “Simulation of surface evolution during ion bombardment”, J. Vac. Sci. Technol. A 6 (1988) 2434.
    [32] F. A. Leon, S. Tazawa, K. Saito, A. Yoshii, and D. L. Scharfetter, “Numerical algorithms for precise calculation of surface movement in 3-D topography simulation”, VLSI Process and Device Modeling, International Workshop on, 58-59, 1993.
    [33] 黃家麒,四道光干涉微影之曝光與顯影參數對微結構輪廓及深度之探討,國立中央大學機械工程研究所碩士論文,2006.
    [34] P. Wei and W. Wang, “A TE-TM mode splitter on lithium niobate using Ti, Ni, and MgO diffusions”, IEEE Photon. Technol. Lett. 6 (1994) 245.
    [35] L. B. Soldano, A. I. de Vreede, M. K. Smit, B. H.Verbeek, E. G. Metaal, and F. H. Green, “Mach–Zehnder interferometer polarization splitter in InGaAsP/InP”, IEEE Photon. Technol. Lett. 6 (1994) 402.
    [36] J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E. H. Lee, S. G. Park, D.Woo, S. Kim, and B. H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application”, IEEE Photon. Technol. Lett. 15 (2003) 72.
    [37] T. K. Liang and H. K. Tsang, “Integrated polarization beam splitter in high index contrast silicon-on-insulator waveguides”, IEEE Photon. Technol. Lett. 17 (2005) 393.
    [38] S. Kim, G. P. Nordin, J. Cai, and J. Jiang, “Ultracompact high-efficiency polarizing beam splitter with a hybrid photonic crystal and conventional waveguide structure”, Opt. Lett. 28 (2003) 2384.
    [39] T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter”, IEEE Photon. Technol. Lett. 17 (2005) 1435.
    [40] X. Ao, L. Liu, L.Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type”, Appl. Phys. Lett. 89 (2006) 171115.
    [41] H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Ultrasmall polarization splitter based on silicon wire waveguides”, Opt. Express 14 (2006) 12401.
    [42] C. Y. Tai, S. H. Chang, and T. C. Chiu, “Design and Analysis of an Ultra-Compact and Ultra-Wideband Polarization Beam Splitter Based on Coupled Plasmonic Waveguide Arrays”, IEEE Photon. Technol. Lett. 19 (2007) 1448.
    [43] E. Schonbrun, Q. Wu, and W. Park, T. Yamashita and C. J. Summers, “Polarization beam splitter based on a photonic crystal heterostructure”, Opt. Lett. 31 (2006) 3104.
    [44] Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura and S. Kawakami, “Photonic crystal polarisation splitters”, Electron. Lett. 35 (1999) 1271.
    [45] C. H. Chan, C. C. Chen, C. K. Huang, W. H. Weng, H. S. Wei, H. Chen, H. T. Lin, H. S. Chang, W. Y. Chen, W. H. Chang and T. M. Hsu, “Self-assembled free-standing colloidalcrystals”, Nanotechnology 16 (2005) 1440.

    QR CODE
    :::