跳到主要內容

簡易檢索 / 詳目顯示

研究生: 斐歐琳
Fiolenta Marpaung
論文名稱: 以MODIS衛星影像的都市熱能分析檢驗印尼雅加達地區的都市熱島現象
Urban Thermal Analysis of MODIS Images for Examining Heat Island Effects in Jakarta, Indonesia
指導教授: 陳繼藩
Chi-Farn Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 國際永續發展碩士在職專班
International Environment Sustainable Development Program
畢業學年度: 100
語文別: 英文
論文頁數: 79
中文關鍵詞: 都市熱島地表溫度最低氣溫差異植生指數熱-冷物件
外文關鍵詞: and Hot-Cold Objects, NDVI, Minimum Air Temperature, LST, Urban Heat Island
相關次數: 點閱:21下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 都市熱島現象是因為都市內土地使用與人口密度非預期的發展變化所產生熱區效應。這是一個強烈惡化的環境議題,特別是熱帶區域的城市,如印尼的雅加達。雅加達是亞洲當今快速發展的十大巨型城市之一。從2000到2010年間,這個區域每年有著約1.4%的人口增加率,由人口增加邀躍而新闢道路、建物以及其他類型的人造建物,反映著都市中心的成長與擴張,並且也造成自然地表與地景的破壞。
    本研究將探討從2006年到2009年乾季時節(六月到八月)雅加達區域都市熱島現象的空間分析。研究資料調查包含了地表溫度、最小空氣溫度、以地表溫度與差異植生指數預期相關性的預測空氣溫度分析,與熱-冷物件部分圖像的比例來進行研究分析。
    研究結果顯示於2006~2009年的乾季期間,雅加達區域確實發生了熱島現象。以雅加達地區的地表溫度與最低氣溫的分析顯示雅加達的都市區域相比與郊區有較高的地表溫度與較高的氣溫。衛星影像的地表溫度雲覆蓋縫隙區我們以最小氣溫填補,接著以地表氣溫與與差異植生指數相關性推導出的預期氣溫亦顯示出都市區較市郊周圍區域有較高的氣溫。影像中最高熱的物體部分都市區域亦較郊區來的多。其中熱物件比例與影響地表溫度的關聯性。


    The urban heat island phenomenon is a warmest condition in the city area due to unexpected changing of land cover and population density. It is the most growing environmental problems in urban areas especially in tropical cities, such as in Jakarta, Indonesia. Jakarta is one of the top ten megacities in Asia that has rapidly growing nowadays. With the growth rate of population is about 1.4% per year from 2000 to 2010, indicates the increasing growth and expansion of our urban centers which entail the construction of new roads, buildings, and other various human made structures to accommodate the growing population, and in turn, the destruction of the natural ground cover and landscape.
    This study explores spatial investigation of urban heat island effects of Jakarta, Indonesia in dry season (June – August) from 2006 - 2009. The spatial investigations are analysis of Land Surface Temperature (LST) and minimum air temperatures, estimation air temperature with LST-NDVI (Normalized Differenced Vegetation Index) correlation and determination of hot-cold object fraction images.
    The investigations show that there was urban heat island effects occurred in Jakarta for dry season in 2006 – 2009. The analysis of LST and minimum air temperature in Jakarta indicate that urban area of Jakarta had higher land surface temperature and higher minimum air temperature than in rural area outside of Jakarta. The minimum air temperature can be used to fill the gaps of the satellite-based LST. The estimation of air temperature using LST-NDVI correlation also indicates the higher air temperature had occurred in urban area of Jakarta than in rural area outside of Jakarta. The higher hot objects fraction images were also occurred in urban area of Jakarta than in rural area outside of Jakarta. The hot objects displayed a more significant role in influencing LST patterns.

    CHINESE ABSTRACT i ABSTRACT ii ACKNOWLEDGEMENTS iii TABLE OF CONTENTS iv LIST OF FIGURES vi LIST OF TABLES viii 1. INTRODUCTION - 1 - 1.1. Background - 1 - 1.2. Objectives - 3 – 2. LITERATURE REVIEW - 4 - 2.1. The Urban Heat Island (UHI) - 4 - 2.1.1. Definition - 4 - 2.1.2. Types of Urban Heat Island - 4 - 2.1.3. The Urban Heat Island Characteristics - 6 - 2.1.4. The Urban Heat Island Formation and Controls - 7 - 2.2. Brief Description of Remote Sensing - 10 - 2.2.1. Remotely Sensed Surface Temperature - 11 - 2.2.2. Land Surface Temperature Sensor - 12 - 2.3. Review of Urban Heat Island Research based on Urban Climatology and Environmental Change Issues - 16 - 3. STUDY AREA AND DATA COLLECTION - 19 - 3.1. Description of Study Area - 19 - 3.1.1. General Information of Indonesia - 19 - 3.1.2. Geography of Jakarta - 21 - 3.1.3. Climatology of Jakarta - 23 - 3.1.4. Demographic of Jakarta - 25 - 3.2. Data Set Collection - 27 - 3.2.1. Meteorological data - 28 - 3.2.2. Land Surface Temperature and Emissivity - 28 - 3.2.3. Vegetation Index – NDVI - 29 - 4. METHODOLOGY - 31 - 4.1. Image Pre-processing - 32 - 4.2. Air Temperature - 32 - 4.2.1. Analysis of Air Temperature Using MODIS data and Meteorological Data Observation - 32 - 4.2.2. Temperature – Normalized Vegetation Difference Index - 36 - 4.3. Linear Spectral Mixture Analysis - 38 - 4.4. Extraction of Thermal Features with Linear Spectral Mixture Analysis - 39 - 4.5. Relationships between Land Surface Temperature and Thermal Features - 41 - 5. RESULT AND DISCUSSION - 44 - 5.1. Analysis Air Temperature in Jakarta and Surroundings - 44 - 5.1.1. Analysis of Temperature Using MODIS and AWS Data - 44 - 5.1.2. Analysis of Temperature-Normalized Difference Vegetation Index - 50 - 5.2. Analysis of Thermal Features in Jakarta and Surroundings - 58 – 6. CONCLUSION AND RECOMMENDATION - 62 - 6.1. Conclusion - 62 - 6.2. Recommendation - 63 - REFERENCES - 64 -

    REFERENCES
    1. Cao, X., Onishi, A., and Imura, H. 2010. Quantifying the Cool Island Intensity of Urban Parks Using ASTER and IKONOS data. Landscape and Urban Planning 96: 224-231.
    2. Coordination Agency for Surveys and Mapping Indonesia, Citied: May 11, 2012. URL: http://www.bakosurtanal.go.id.
    3. Czajkowski, K. P., Goward, S. N., Stadler, S. J., and Walz, A. 2000. Thermal Remote Sensing of Near Surface Environmental Variables: Application over The Oklahoma Mesonet. Professional Geographer 52: 345−357.
    4. Fensholt, R., Sandholt, I., and Stisen, S. 2006. Evaluating MODIS, Meris, and Vegetation — Vegetation Indices Using In Situ Measurements in A Semiarid Environment. IEEE Transactions on Geoscience and Remote Sensing 44: 1774−1786.
    5. Goward, S.N., Waring, R. H., Dye, D. G., and Yang, J. L. 1994. Ecological Remote Sensing at OTTER: Macro scale Satellite Observations. Ecological Applied 4: 322-343.
    6. Hung, T., Uchihama, D., Ochi, S., and Zasuoka, Z. 2006. Assessment with Satellite Data of Urban Heat Island Effects in Asian Mega Cities. International Journal of Applied Earth Observation and Geoinformation 8: 34-48.
    7. Imhoff, M. L., Yhang, P., Wolfe, R. E., and Bounoa, L. 2010. Remote Sensing of Urban Heat Island Effects across Biomes in the Continental USA. Remote Sensing of Environment 114: 504-513.
    8. IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
    9. Jensen, J. R. 2005. Introductory Digital Image Processing. A Remote Sensing Perspective, 3rd Edition, Pearson Prentice Hall.
    10. Kimberly, A., and Gray Mary, E. F. 2000. The Urban Heat Island, Photochemical Smog, and Chicago: Local Features of the Problem and Solution. Atmospheric Pollution Prevention Division U.S. Environmental Protection Agency.
    11. Kitada , T., Kobayashi, E., Kurata, G., and Ho, C. S 2003. Temperature Rise over the City of Johor Bahru Caused by Extended Urbanization: Numerical Analysis For 1970, 2000, and 2020 by using MM5. Seminar Proceedings on the Planning of Urban Energy System, Johor Bahru, Malaysia, 17–18 September, 33–47.
    12. Lillesand, T., Kiefer R. W., and Chipman J. 2007. Remote Sensing and Image Interpretation, Fifth Edition, Wiley.
    13. Lu, D. and Weng, L. 2006. Use of Impervious Surface in Urban Land-Use Classification. Remote Sensing of Environment 102: 146-160.
    14. Lu, D., and Weng, L. 2006. Spectral Mixture Analysis of ASTER Images for Examining the Relationship between Urban Thermal Features and Biophysical Descriptors in Indianapolis, Indiana, USA. Remote Sensing of Environment 1004: 157-167.
    15. Megacity-Wikipedia, Citied: June 29, 2012. URL: www.wikipedia.org/wiki/Megacity.
    16. Meteorological Climatological and Geophysical Agency, Citied: May 9, 2012. URL: http://www.bmkg.go.id.
    17. MODIS data information, Citied: March 10, 2012. URL: https://lpdaac.usgs.gov
    18. Momeni, M., and Saradjian, M. R. 2007. Evaluation NDVI-Based Emissivities of MODIS Bands 31 And 32 Using Emissivities Derived By Day/Night LST Algorithm. Remote Sensing of Environment 106: 190-198.
    19. Mostovoy, G. V., King, R., Reddy, K. R., and Kakani, V. G. 2005. Using MODIS LST Data for High-Resolution Estimates of Daily Air Temperature over Mississippi. IEEE.
    20. NOAA. 2012. Cold and Warm Episodes by Season. Historical El Niño / La Niña Episodes (1950 – present). Citied: June 30, 2012. URL: http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml.
    21. Oke, T. R., Jhonson, G. T., Steyn, D. G., and Watson, I. D. 1991. Simulation of Surface Urban Heat Islands under ‘Ideal’ Conditions at Night Part 2: Diagnosis of Causation. Boundary Layer Meteorology 56: 339–358.
    22. Owen, T. W., Carlson, T. N., and Gillies, R. R. 1998. An Assessment of Satellite Remotely-Sensed Land Cover Parameters in Quantitatively Describing the Climatic Effect of Urbanization. International Journal of Remote Sensing 19: 1663−1681.
    23. Pongrácz, R., Bartholy, J., and Dezso, Z. 2010. Application of Remotely Sensed Thermal Information to Urban Climatology of Central European Cities. Physics and Chemistry of Earth 35: 95-99.
    24. Pridhoko, L., and Goward, S. N. 1997. Estimation of Air Temperature from Remotely Sensed Observations. Remote Sensing Environment 60: 335-346.
    25. Quattrochi, D. A. and Luvall, J. C. 2004. Thermal Remote Sensing in Land Surface Processes. CRC Press.
    26. Roth, M. 2007. Review of Urban Climate Research in (Sub) Tropical Regions. International Journal of Climatology 27: 1859–1873.
    27. Statictic Indonesia, Citied: May 1, 2012. URL: www.bps.go.id
    28. Stisen, S. Sandholt, I., Nørgaard, A., Fensholt, R., and Eklundh, L. 2007. Estimation of Diurnal Air Temperature Using MSG SEVIRI Data in West Africa. Remote Sensing of Environment 110: 262-274.
    29. The United Nations Development Program, 2011. Citied: May 14, 2012. URL: http://hdrstats.undp.org/en/countries/profiles/IDN.html.
    30. Tokairin, T., Sofyan, A., and Kitada, T. 2010, Effect of Land Use Changes on Local Meteorological Conditions in Jakarta, Indonesia: Toward the Evaluation of the Thermal Environment of Megacities in Asia. International Journal of Climatology 30: 1931–1941.
    31. Tomlison, C.J., Chapman, L., Thornes, J. E., and Baker, C. Remote Sensing Land Surface Temperature for Meteorology and Climatology. Meteorology Application 18: 296-306.
    32. United States Environmental Protection Agency (USEPA). 2010. Reducing Urban Heat Islands: Compendium of Strategies Urban Heat Island Basics. Citied: May 14, 2012. URL: http://www.epa.gov/hiri/resources/pdf/BasicsCompendium.pdf.
    33. Voogt, J. 2002. Urban Heat Island. In Munn, T. (ed.) Encyclopedia of Global Environmental Change, Vol. 3. Chichester: John Wiley and Sons.
    34. Voogt, J. A., and Oke, T. R. 1997. Complete Urban Surface Temperatures. Journal of Applied Meteorology 36: 1117–1132.
    35. Voogt, J. A., and Oke, T. R. 2003. Thermal Remote Sensing of Urban Areas. Remote Sensing of Environment 86: 370−384.
    36. Weng, Q. 2003. Fractal Analysis of Satellite-Detected Urban Heat Island Effect. Photogrammetric Engineering and Remote Sensing 69: 555-566.
    37. Weng, Q., and Lu, D. 2006. A Sub-pixel Analysis of Urbanization Effect on Land Surface Temperature and Its Interplay with Impervious Surface and Vegetation Coverage in Indianapolis, Unite States. International Journal of Applied Earth Observation and Geoinformation 10: 68-83.
    38. Weng, Q., Lu, D., and Schubring, J. 2004. Estimation of Land Surface Temperature-Vegetation Abundance Relationship for Urban Heat Island Studies. Remote Sensing of Environment 89 (4): 467-483.
    39. Yuan, F., and Bauer, M. E. 2007. Comparison of Impervious Surface Area and Normalized Difference Vegetation Index as Indicators of Surface Heat Island Effects in Landsat Imagery. Remote Sensing of Environment 106: 375-386.

    QR CODE
    :::