| 研究生: |
陳彥凱 Yan-Kai Chen |
|---|---|
| 論文名稱: |
鐵接枝二氧化鈦光催化甲醇吸附與轉換反應之第一原理計算 DFT Investigation of Photocatalysis in Fe-Grafted TiO2 for Methanol Adsorption and Conversion |
| 指導教授: |
張博凱
Bor-Kae Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 二氧化鈦光觸媒催化 、甲醇催化轉換反應 、第一原理計算 |
| 外文關鍵詞: | TiO2 photocatalyst, methanol catalytic conversion reaction, density function theory (DFT) |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了應對全球變暖和氣候變化,如何消除溫室氣體是一個不可避免的問題。其中,甲醇的轉化反應是開發新能源的關鍵問題,而許多研究已經證實,二氧化鈦可以作為一種光觸媒材料。此外甲醇是代表一類最簡單的有機分子,對甲醇轉化的研究可以為開發新的能源資源提供新的思路。因此,它通常被認為是有機分子光催化反應的原型。
在本研究中,我們建立TiO2的銳鈦礦結構模型,並通過接枝氧化鐵(也稱為FeO原子團簇)來改質材料(101)表面,以研究光催化反應的機制。此外我們預計表面改質可能會有降低TiO2的能帶間隙等效果,並促進電子在可見光而非紫外光照射下遷移發生光催化反應。我們利用密度函數理論(density functional theory)找到了甲醇TiO2表面的吸附點。通過DFT計算,可以得到甲醇的穩定吸附位點與吸附能量。同樣地,也可以研究和討論甲醇到甲醛的催化分解反應路徑與進行其中的過渡態計算。
In response to global warming and climate changes, how to eliminate greenhouse gases is an unavoidable problem. Among them, the conversion reaction of methanol is the key issue for the development of new energy resources while many studies have confirmed that titanium dioxide (TiO2) can act as a photocatalyst. Moreover, methanol is a molecule representing a class of simplest organic molecules and the investigation of methanol conversion can provide new ideas for the development of new energy resources. As a result, it is often considered as a prototype for the photocatalytic reaction of organic molecules.
In this work, we built the TiO2 anatase structure and modified the (101) surface by grafting the iron oxide also known as Fe clusters in order to investigate the mechanism of photocatalytic reaction. In addition, we expect that surface modification might decrease the band gap of TiO2 and facilitate the migration of electrons under irradiation of visible light rather than ultraviolet light. Furthermore, we find the adsorption site of methanol on TiO2 surface using density function theory (DFT). Through the DFT calculation, the adsorption energy of methanol could be obtained. Accordingly, the pathway of decomposition reaction for methanol to formaldehyde and the calculations transition state can also be investigated and discussed.
1. Zandalinas, S.I., F.B. Fritschi, and R. Mittler, Global warming, climate change, and environmental pollution: recipe for a multifactorial stress combination disaster. Trends in Plant Science, 2021. 26(6): p. 588-599.
2. Johnsson, F., J. Kjärstad, and J. Rootzén, The threat to climate change mitigation posed by the abundance of fossil fuels. Climate Policy, 2019. 19(2): p. 258-274.
3. Kardooni, R., S.B. Yusoff, F.B. Kari, and L. Moeenizadeh, Public opinion on renewable energy technologies and climate change in Peninsular Malaysia. Renewable Energy, 2018. 116: p. 659-668.
4. Ali, A.H., S. Kapoor, and S.K. Kansal, Studies on the photocatalytic decolorization of pararosanilne chloride dye and its simulated dyebath effluent. Desalination and Water Treatment, 2011. 25(1-3): p. 268-275.
5. Omrania, N., A. Nezamzadeh-Ejhieha, and M. Alizadehb, Brief study on the kinetic aspect of photodegradation of sulfasalazine aqueous solution by cuprous oxide/cadmium sulfide nanoparticles. Catalyst, 2019. 17: p. 24.
6. Rani, A., K. Singh, A.S. Patel, A. Chakraborti, S. Kumar, et al., Visible light driven photocatalysis of organic dyes using SnO2 decorated MoS2 nanocomposites. Chemical Physics Letters, 2020. 738: p. 136874.
7. Fujishima, A., X. Zhang, and D.A. Tryk, Heterogeneous photocatalysis: from water photolysis to applications in environmental cleanup. International Journal of Hydrogen Energy, 2007. 32(14): p. 2664-2672.
8. Han, H. and R. Bai, Buoyant photocatalyst with greatly enhanced visible-light activity prepared through a low temperature hydrothermal method. Industrial & Engineering Chemistry Research, 2009. 48(6): p. 2891-2898.
9. Fujishima, A. and K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972. 238(5358): p. 37-38.
10. Olah, G.A., Beyond oil and gas: the methanol economy. Angewandte Chemie International Edition, 2005. 44(18): p. 2636-2639.
11. Yang, C.-J. and R.B. Jackson, China's growing methanol economy and its implications for energy and the environment. Energy Policy, 2012. 41: p. 878-884.
12. Millar, G.J. and M. Collins, Industrial production of formaldehyde using polycrystalline silver catalyst. Industrial & Engineering Chemistry Research, 2017. 56(33): p. 9247-9265.
13. Gesesse, G.D., C. Wang, B.K. Chang, S.-H. Tai, P. Beaunier, et al., A soft-chemistry assisted strong metal–support interaction on a designed plasmonic core–shell photocatalyst for enhanced photocatalytic hydrogen production. Nanoscale, 2020. 12(13): p. 7011-7023.
14. Liu, Q., J. Huang, H. Tang, X. Yu, and J. Shen, Construction 0D TiO2 nanoparticles/2D CoP nanosheets heterojunctions for enhanced photocatalytic H2 evolution activity. Journal of Materials Science & Technology, 2020. 56: p. 196-205.
15. Wang, Y., M. Zu, X. Zhou, H. Lin, F. Peng, et al., Designing efficient TiO2-based photoelectrocatalysis systems for chemical engineering and sensing. Chemical Engineering Journal, 2020. 381: p. 122605.
16. Zhang, W., Y. Tian, H. He, L. Xu, W. Li, et al., Recent advances in the synthesis of hierarchically mesoporous TiO2 materials for energy and environmental applications. National Science Review, 2020. 7(11): p. 1702-1725.
17. Cai, R., K. Hashimoto, K. Itoh, Y. Kubota, and A. Fujishima, Photokilling of malignant cells with ultrafine TiO2 powder. Bulletin of The Chemical Society of Japan, 1991. 64(4): p. 1268-1273.
18. Nakata, K., T. Ochiai, T. Murakami, and A. Fujishima, Photoenergy conversion with TiO2 photocatalysis: new materials and recent applications. Electrochimica Acta, 2012. 84: p. 103-111.
19. Zhang, J., P. Zhou, J. Liu, and J. Yu, New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Physical Chemistry Chemical Physics, 2014. 16(38): p. 20382-20386.
20. Vequizo, J.J.M., H. Matsunaga, T. Ishiku, S. Kamimura, T. Ohno, et al., Trapping-induced enhancement of photocatalytic activity on brookite TiO2 powders: comparison with anatase and rutile TiO2 powders. ACS Catalysis, 2017. 7(4): p. 2644-2651.
21. Kočí, K., K. Matějů, L. Obalová, S. Krejčíková, Z. Lacný, et al., Effect of silver doping on the TiO2 for photocatalytic reduction of CO2. Applied Catalysis B: Environmental, 2010. 96(3-4): p. 239-244.
22. Umar, M. and H.A. Aziz, Photocatalytic degradation of organic pollutants in water. Organic Pollutants-Monitoring, Risk and Treatment, 2013. 8: p. 196-197.
23. Alberico, E. and M. Nielsen, Towards a methanol economy based on homogeneous catalysis: methanol to H2 and CO2 to methanol. Chemical Communications, 2015. 51(31): p. 6714-6725.
24. Chang, C.D. and A.J. Silvestri, The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts. Journal of Catalysis, 1977. 47(2): p. 249-259.
25. Ilias, S. and A. Bhan, Mechanism of the catalytic conversion of methanol to hydrocarbons. ACS Catalysis, 2013. 3(1): p. 18-31.
26. Nuhu, A., J. Soares, M. Gonzalez-Herrera, A. Watts, G. Hussein, et al., Methanol oxidation on Au/TiO2 catalysts. Topics in Catalysis, 2007. 44(1): p. 293-297.
27. Wang, M., D.-j. Guo, and H.-l. Li, High activity of novel Pd/TiO2 nanotube catalysts for methanol electro-oxidation. Journal of Solid State Chemistry, 2005. 178(6): p. 1996-2000.
28. Drew, K., G. Girishkumar, K. Vinodgopal, and P.V. Kamat, Boosting fuel cell performance with a semiconductor photocatalyst: TiO2/Pt− Ru hybrid catalyst for methanol oxidation. The Journal of Physical Chemistry B, 2005. 109(24): p. 11851-11857.
29. Maldonado, C., J. Fierro, G. Birke, E. Martinez, and P. Reyes, Conversion of methanol to formaldehyde on TiO2 supported Ag nanoparticles. Journal of The Chilean Chemical Society, 2010. 55(4): p. 506-510.
30. Nalajala, N., K.N. Salgaonkar, I. Chauhan, S.P. Mekala, and C.S. Gopinath, Aqueous methanol to formaldehyde and hydrogen on Pd/TiO2 by photocatalysis in direct sunlight: structure dependent activity of Nano-Pd and atomic Pt-coated counterparts. ACS Applied Energy Materials, 2021. 4(11): p. 13347-13360.
31. Setvin, M., X. Shi, J. Hulva, T. Simschitz, G.S. Parkinson, et al., Methanol on anatase TiO2 (101): mechanistic insights into photocatalysis. ACS catalysis, 2017. 7(10): p. 7081-7091.
32. Walenta, C.A., C. Courtois, S.L. Kollmannsberger, M. Eder, M. Tschurl, et al., Surface species in photocatalytic methanol reforming on Pt/TiO2 (110): learning from surface science experiments for catalytically relevant conditions. ACS Catalysis, 2020. 10(7): p. 4080-4091.
33. Pipornpong, W., R. Wanbayor, and V. Ruangpornvisuti, Adsorption CO2 on the perfect and oxygen vacancy defect surfaces of anatase TiO2 and its photocatalytic mechanism of conversion to CO. Applied Surface Science, 2011. 257(24): p. 10322-10328.
34. Liu, J.-Y., X.-Q. Gong, and A.N. Alexandrova, Mechanism of CO2 photocatalytic reduction to methane and methanol on defected anatase TiO2 (101): a density functional theory study. The Journal of Physical Chemistry C, 2019. 123(6): p. 3505-3511.
35. Vijayalakshmi, R. and V. Rajendran, Synthesis and characterization of nano-TiO2 via different methods. Arch. Appl. Sci. Res, 2012. 4(2): p. 1183-1190.
36. Meng, A., L. Zhang, B. Cheng, and J. Yu, Dual cocatalysts in TiO2 photocatalysis. Advanced Materials, 2019. 31(30): p. 1807660.
37. Nolan, M., Electronic coupling in iron oxide-modified TiO2 leads to a reduced band gap and charge separation for visible light active photocatalysis. Physical Chemistry Chemical Physics, 2011. 13(40): p. 18194-18199.
38. Finazzi, E., C. Di Valentin, A. Selloni, and G. Pacchioni, First principles study of nitrogen doping at the anatase TiO2 (101) surface. The Journal of Physical Chemistry C, 2007. 111(26): p. 9275-9282.
39. Hashimoto, K., H. Irie, and A. Fujishima, TiO2 photocatalysis: a historical overview and future prospects. Japanese Journal of Applied Physics, 2005. 44(12R): p. 8269.
40. Lazzeri, M., A. Vittadini, and A. Selloni, Structure and energetics of stoichiometric TiO2 anatase surfaces. Physical Review B, 2001. 63(15): p. 155409.
41. Nolan, M., A. Iwaszuk, A.K. Lucid, J.J. Carey, and M. Fronzi, Design of novel visible light active photocatalyst materials: surface modified TiO2. Advanced Materials, 2016. 28(27): p. 5425-5446.
42. Tada, H., Q. Jin, A. Iwaszuk, and M. Nolan, Molecular-scale transition metal oxide nanocluster surface-modified titanium dioxide as solar-activated environmental catalysts. The Journal of Physical Chemistry C, 2014. 118(23): p. 12077-12086.
43. Li, C., R. Requist, and E. Gross, Density functional theory of electron transfer beyond the Born-Oppenheimer approximation: case study of LiF. The Journal of Chemical Physics, 2018. 148(8): p. 084110.
44. Slater, J.C., A simplification of the Hartree-Fock method. Physical Review, 1951. 81(3): p. 385.
45. Blöchl, P.E., O. Jepsen, and O.K. Andersen, Improved tetrahedron method for Brillouin-zone integrations. Physical Review B, 1994. 49(23): p. 16223.
46. Payne, M.C., M.P. Teter, D.C. Allan, T. Arias, and a.J. Joannopoulos, Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Reviews of Modern Physics, 1992. 64(4): p. 1045.
47. Furthmüller, J., J. Hafner, and G. Kresse, Ab initio calculation of the structural and electronic properties of carbon and boron nitride using ultrasoft pseudopotentials. Physical Review B, 1994. 50(21): p. 15606.
48. <Materials Studio Overview_2020EDCTecnologia.>
49. Clark, S.J., M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I. Probert, et al., First principles methods using CASTEP. Zeitschrift für Kristallographie-Crystalline Materials, 2005. 220(5-6): p. 567-570.
50. Burdett, J.K., T. Hughbanks, G.J. Miller, J.W. Richardson Jr, and J.V. Smith, Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K. Journal of The American Chemical Society, 1987. 109(12): p. 3639-3646.
51. Zhang, H., W. Wang, H. Zhao, L. Zhao, L.-Y. Gan, et al., Facet-dependent interfacial charge transfer in Fe (III)-grafted TiO2 nanostructures activated by visible light. ACS Catalysis, 2018. 8(10): p. 9399-9407.
52. Barone, V., M. Casarin, D. Forrer, M. Pavone, M. Sambi, et al., Role and effective treatment of dispersive forces in materials: polyethylene and graphite crystals as test cases. Journal of Computational Chemistry, 2009. 30(6): p. 934-939.
53. Ma, J., H. He, and F. Liu, Effect of Fe on the photocatalytic removal of NOx over visible light responsive Fe/TiO2 catalysts. Applied Catalysis B: Environmental, 2015. 179: p. 21-28.
54. Xu, C., Y. Zhang, J. Chen, J. Lin, X. Zhang, et al., Enhanced mechanism of the photo-thermochemical cycle based on effective Fe-doping TiO2 films and DFT calculations. Applied Catalysis B: Environmental, 2017. 204: p. 324-334.
55. Chen, Q.L., B. Li, G. Zheng, K.H. He, and A.S. Zheng, First-principles calculations on electronic structures of Fe-vacancy-codoped TiO2 anatase (101) surface. Physica B: Condensed Matter, 2011. 406(20): p. 3841-3846.
56. Matar, S.F., R. Weihrich, D. Kurowski, and A. Pfitzner, DFT calculations on the electronic structure of CuTe2 and Cu7Te4. Solid State Sciences, 2004. 6(1): p. 15-20.
57. Bennett, J.W., B.G. Hudson, I.K. Metz, D. Liang, S. Spurgeon, et al., A systematic determination of hubbard U using the GBRV ultrasoft pseudopotential set. Computational Materials Science, 2019. 170: p. 109137.
58. Noodleman, L. and D.A. Case, Density-functional theory of spin polarization and spin coupling in iron—sulfur clusters, in advances in inorganic chemistry. 1992, Elsevier. p. 423-470.
59. Zeller, R., Spin-polarized dft calculations and magnetism. Computational Nanoscience: Do It Yourself, 2006. 31: p. 419-445.
60. Shao, G., Red shift in manganese-and iron-doped TiO2: a DFT+ U analysis. The Journal of Physical Chemistry C, 2009. 113(16): p. 6800-6808.
61. Gong, J., C. Yang, J. Zhang, and W. Pu, Origin of photocatalytic activity of W/N-codoped TiO2: H2 production and DFT calculation with GGA+ U. Applied Catalysis B: Environmental, 2014. 152: p. 73-81.
62. Gurkan, Y.Y., E. Kasapbasi, and Z. Cinar, Enhanced solar photocatalytic activity of TiO2 by selenium (IV) ion-doping: characterization and DFT modeling of the surface. Chemical Engineering Journal, 2013. 214: p. 34-44.
63. Henderson, M.A., A surface science perspective on TiO2 photocatalysis. Surface Science Reports, 2011. 66(6-7): p. 185-297.
64. Modak, B., K. Srinivasu, and S.K. Ghosh, A hybrid DFT based investigation of the photocatalytic activity of cation–anion codoped SrTiO3 for water splitting under visible light. Physical Chemistry Chemical Physics, 2014. 16(44): p. 24527-24535.
65. Wang, F., C. Di Valentin, and G. Pacchioni, Doping of WO3 for photocatalytic water splitting: hints from density functional theory. The Journal of Physical Chemistry C, 2012. 116(16): p. 8901-8909.
66. Di Valentin, C., F. Wang, and G. Pacchioni, Tungsten oxide in catalysis and photocatalysis: hints from DFT. Topics in Catalysis, 2013. 56(15): p. 1404-1419.
67. McNellis, E.R., J. Meyer, and K. Reuter, Azobenzene at coinage metal surfaces: role of dispersive van der Waals interactions. Physical Review B, 2009. 80(20): p. 205414.
68. Govind, N., M. Petersen, G. Fitzgerald, D. King-Smith, and J. Andzelm, A generalized synchronous transit method for transition state location. Computational Materials Science, 2003. 28(2): p. 250-258.
69. Hare, S.R. and D.J. Tantillo, Post-transition state bifurcations gain momentum–current state of the field. Pure and Applied Chemistry, 2017. 89(6): p. 679-698.