| 研究生: |
陳瑋昇 Wei-Sheng Chen |
|---|---|
| 論文名稱: | Natural amino acid conjugates of lithocholic acid as α-2,6-sialyltransferase inhibitors with antimigratory and antiangiogenic activity |
| 指導教授: |
李文山
Wen-Shan Li 侯敦仁 Duen-Ren Hou |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 唾液酸 、唾液酸轉移酶 、癌症轉移 、石膽酸 |
| 外文關鍵詞: | sialic acid, sialyltransferase, metastasis, lithocholic acid |
| 相關次數: | 點閱:21 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這項工作中,石膽酸的氨基酸錯合物被設計、合成並評估了它們的細胞毒性、α-2,6-唾液酸轉移酶抑制、抗遷移和抗血管生成作用。 在該系列中,具有色氨酸部分的 S1047 顯示可抑制 ST6GalI 活性(IC50 26.5 ± 1.2 μM)、抑制腫瘤生長、延遲癌細胞遷移並減少動物模型(生物體外)中的血管生成以及腫瘤生長。 正在進行進一步研究以尋求石膽酸的氨基酸錯合物的臨床應用。
In this work, the amino acid conjugates of lithocholic acid were designed, synthesized and evaluated their cytotoxicity, α-2,6-sialyltransferase inhibition, antimigratory and antiangiogenic effects. Among the series, S1047, possessing the tryptophan moiety, were shown to inhibit ST6GalI activity (IC50 26.5 ± 1.2 μM), suppress tumor growth, delay cancer cell migration, and reduce angiogenesis and tumor growth in animal model (ex vivo). Further study to pursue clinical application of amino acid conjugates of lithocholic acid is in progress.
Fu, C.-W.; Tsai, H.-E.; Chen, W.-S.; Chang, T.-T.; Chen, C.-L.; Hsiao, P.-W.; Li, W.-S., Sialyltransferase Inhibitors Suppress Breast Cancer Metastasis. J. Med. Chem. 2020, 64 (1), 527-542.
2. Vajaria, B. N.; Patel, P. S., Glycosylation: a hallmark of cancer? Glycoconj. J. 2017, 34 (2), 147-156.
3. Rodrigues, J. G.; Balmaña, M.; Macedo, J. A.; Poças, J.; Fernandes, Â.; de-Freitas-Junior, J. C. M.; Pinho, S. S.; Gomes, J.; Magalhães, A.; Gomes, C., Glycosylation in cancer: Selected roles in tumour progression, immune modulation and metastasis. Cell. Immunol. 2018, 333, 46-57.
4. Jacobs, C. L.;Goon, S.; Yarema, K. J.; Hinderlich, S.; Hang, H. C.; Chai, D. H.; Bertozzi, C. R., Substrate specificity of the sialic acid biosynthetic pathway. Biochemistry 2001, 40 (43), 12864-12874.
5. Wang, L.; Liu, Y.; Wu, L.; Sun, X.-L., Sialyltransferase inhibition and recent advances. Biochimica Et Biophysica Acta (BBA)-Proteins and Proteomics 2016, 1864 (1), 143-153.
6. Lu, J.; Gu, J., Significance of β-galactoside α2, 6 sialyltranferase 1 in cancers. Molecules 2015, 20 (5), 7509-7527.
7. Jung, K.-H.; Schwörer, R.; Schmidt, R. R., Sialyltransferase inhibitors. Trends Glycosci. Glycotechnol. 2003, 15 (85), 275-289.
8. Wang, X.; Zhang, L. H.; Ye, X. S., Recent development in the design of sialyltransferase inhibitors. Med. Res. Rev. 2003, 23 (1), 32-47.
9. Rillahan, C. D.; Antonopoulos, A.; Lefort, C. T.; Sonon, R.; Azadi, P.; Ley, K.; Dell, A.; Haslam, S. M.; Paulson, J. C., Global metabolic inhibitors of sialyl-and fucosyltransferases remodel the glycome. Nat. Chem. Biol. 2012, 8 (7), 661-668.
10. Kajihara, Y.; Kodama, H.; Wakabayashi, T.; Sato, K.-i.; Hashimoto, H., Characterization of inhibitory activities and binding mode of synthetic 6′-modified methyl N-acetyl-β-lactosaminide toward rat liver CMP-D-Neu5Ac: d-galactoside-(2→ 6)-α-d-sialyltransferase. Carbohydr. Res. 1993, 247, 179-193.
11. Guo, J.; Li, W.; Xue, W.; Ye, X.-S., Transition state-based sialyltransferase inhibitors: mimicking oxocarbenium ion by simple amide. J. Med. Chem. 2017, 60 (5), 2135-2141.
12. Li, W.; Niu, Y.; Xiong, D.-C.; Cao, X.; Ye, X.-S., Highly substituted cyclopentane–CMP conjugates as potent sialyltransferase inhibitors. J. Med. Chem. 2015, 58 (20), 7972-7990.
13. Müller, B.; Schaub, C.; Schmidt, R. R., Efficient sialyltransferase inhibitors based on transition‐state analogues of the sialyl donor. Angew. Chem. Int. Ed. 1998, 37 (20), 2893-2897.
14. Huang, W.; Sun, L.; Wang, B.; Ma, Y.; Yao, D.; Han, W.; Wang, L., Ginsenosides, potent inhibitors of sialyltransferase. Z. Naturforsch. C 2020, 75 (1-2), 41-49.
15. Wu, C.-Y.; Hsu, C.-C.; Chen, S.-T.; Tsai, Y.-C., Soyasaponin I, a potent and specific sialyltransferase inhibitor. Biochem. Biophys. Res. Commun. 2001, 284 (2), 466-469.
16. Chang, K.-H.; Lee, L.; Chen, J.; Li, W.-S., Lithocholic acid analogues, new and potent α-2, 3-sialyltransferase inhibitors. Chem. Commun. 2006, (6), 629-631.
17. Lin, T.-W.; Chang, W.-W.; Chen, C.-C.; Tsai, Y.-C., Stachybotrydial, a potent inhibitor of fucosyltransferase and sialyltransferase. Biochem. Biophys. Res. Commun. 2005, 331 (4), 953-957.
18. Hsu, C.-C.; Lin, T.-W.; Chang, W.-W.; Wu, C.-Y.; Lo, W.-H.; Wang, P.-H.; Tsai, Y.-C., Soyasaponin-I-modified invasive behavior of cancer by changing cell surface sialic acids. Gynecol. Oncol. 2005, 96 (2), 415-422.
19. Fu, C.-W. 由自然界靈感設計及合成出抗癌症和抗癌症轉移試劑: 細胞和動物體內之活性測試評估. National Central University, 2015.
20. Zih-Fan, H., 探討雙高石膽酸衍生物對於唾液酸轉移酶及癌細胞轉移的影響. 臺灣師範大學化學系學位論文 2019, 1-96.
21. Hashimoto, M.; Liu, Y.; Fang, K.; Li, H.-y.; Campiani, G.; Nakanishi, K., Preparation and biological properties of biotinylated PhTX derivatives. Bioorg. Med. Chem. 1999, 7 (6), 1181-1194.
22. Incerti, M.; Tognolini, M.; Russo, S.; Pala, D.; Giorgio, C.; Hassan-Mohamed, I.; Noberini, R.; Pasquale, E. B.; Vicini, P.; Piersanti, S., Amino acid conjugates of lithocholic acid as antagonists of the EphA2 receptor. J. Med. Chem. 2013, 56 (7), 2936-2947.
23. Gale, N. W.; Yancopoulos, G. D., Ephrins and their receptors: a repulsive topic? Cell Tissue Res. 1997, 290 (2), 227-241.
24. Himanen, J.-P.; Saha, N.; Nikolov, D. B., Cell–cell signaling via Eph receptors and ephrins. Curr. Opin. Cell Biol. 2007, 19 (5), 534-542.