| 研究生: |
蔡俊發 CHUN-FA TSAI |
|---|---|
| 論文名稱: |
探討化合物Y抑制神經母細胞瘤轉移之效果 Investigation on the metastasis inhibiting effects of compound Y in neuroblastom |
| 指導教授: |
吳沛翊
Pei-yi Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 生命科學系 Department of Life Science |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | 神經母細胞瘤 、芳香烴受體 |
| 外文關鍵詞: | Aryl hydrocarbon receptor |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
神經母細胞瘤 (神母) 是一種周圍神經系統的兒童癌症,約 50% 的神經母細胞瘤患者在診斷時已發生惡性轉移,因此開發抗轉移藥物是當前神母治療的當務之急。芳香烴受體(Aryl hydrocarbon receptor, AHR)是新發現的神母有利預後因子,AHR的表達與神母腫瘤的組織分化程度呈正相關,並預測患者更好的存活率。此外,我們之前的研究表明,內源性配體犬尿氨酸(Kynurenine, Kyn)激活AHR可顯著抑制神母轉移。然而,Kyn 限制神母轉移的有效劑量較高,這可能限制其作為治療藥物之潛力。化合物Y是我們新鑑定的AHR內源性配體,比Kyn具有更高激活AHR訊息傳遞路徑的能力,為了研究化合物Y是否也對神母轉移具有抑製作用,此研究利用了SK-N-BE(2)C 和 SK-N-SH 兩株神經母細胞瘤細胞來驗證化合物Y對轉移相關細胞行為的影響,包括細胞貼附、遷移和侵襲。首先透過化合物Y處理後的AHR下游基因CYP1A1增加證實化合物 Y 具活化AHR的效果。接著利用化合物 Y處理過後之細胞分別進行傷口癒合實驗、Tans-well 細胞侵犯實驗以及細胞貼附實驗,發現在給予化合物 Y治療過後之細胞的爬行能力與侵犯能力均有明顯下降的趨勢,相反地,細胞的貼附能力反而因為化合物 Y處理而增加,這些變化均與先前Kyn處理後之結果類似。此外,由於上皮細胞間質轉化(epithelial-mesenchymal transition,EMT)是癌症轉移的關鍵機制,為了解化合物 Y造成上述細胞行為變化之可能機制,我透過qPCR的方式觀察EMT相關基因的變化,發現在化合物 Y處理過後會導致Vimentin、Slug的表達下降以及E-鈣粘蛋白(E-cadherin)的表達上調;同時也發現腫瘤轉移抑制基因KISS-1的mRNA表達也受到化合物 Y的刺激而上升,顯示其抑制轉移的潛力。總結,這項研究證實化合物Y確實可以透過活化AHR進而調節KISS-1及EMT相關基因的表達,從而抑制神經母細胞瘤細胞的轉移相關特性。
Neuroblastoma (NB) is a childhood cancer of the peripheral nervous system. About 50% of patients with neuroblastoma have developed malignant metastases at diagnosis. Developing an anti-metastasis drug is urgent for the current NB treatment. Aryl hydrocarbon receptor (AHR) is a new-identified favorable prognostic factor of NB. The expression of AHR positively correlated with the differentiation histology of the NB tumors and predicted better survival of the patients. In addition, our previous study has suggested that activation of AHR by the endogenous ligand kynurenine (Kyn) significantly inhibits NB metastasis. However, the effective dose of Kyn for restricting NB metastasis is high which may limit its therapeutic potential. Compound Y is a novel endogenous ligand of AHR and shows a higher ability than Kyn to activate AHR signaling. To investigate whether compound Y also has inhibiting effects on NB metastasis, SK-N-BE(2)C and SK-N-SH NB cells were treated with compound Y followed by several in vitro analyses. First, the effect of compound Y on AHR activation was confirmed by the upregulation of CYP1A1. Then, to test compound Y’s effect on NB metastasis, wound healing, trans-well invasion assays, and cell adhesion assays were investigated. I found that compound Y inhibits the migration and invasion ability of the two NB cell lines. Reversely, compound Y treatments promote the adhesion of NB cells. These findings are similar to our previous observation of using Kyn as a treatment. Since epithelial-mesenchymal transition (EMT) is a key process of tumor metastasis, the EMT-related genes were analyzed by real-time PCR to verify the underlying mechanism of compound Y treatment. The results show that Vimentin and Slug were downregulated and E-cadherin was upregulated by compound Y. In addition, the tumor metastasis suppressor gene KISS-1 was also upregulated by compound Y indicating its anti-metastasis potential. Altogether, this study suggests that compound Y could affect the expression of EMT-related genes and KISS-1 through AHR activation, resulting in the restriction of NB metastasis.
第六章、參考文獻
Uncategorized References
1. Duckett, J.W. and C.E. Koop, Neuroblastoma. Urol Clin North Am, 1977. 4(2): p. 285-95.
2. Maris, J.M., Recent advances in neuroblastoma. N Engl J Med, 2010. 362(23): p. 2202-11.
3. Gomez, R.L., et al., Tumoral heterogeneity in neuroblastoma. Biochim Biophys Acta Rev Cancer, 2022. 1877(6): p. 188805.
4. Monclair, T., et al., The International Neuroblastoma Risk Group (INRG) staging system: an INRG Task Force report. J Clin Oncol, 2009. 27(2): p. 298-303.
5. . Lancet, 2007. 369(9579): p. 2106-20.
6. DuBois, S.G., et al., Metastatic sites in stage IV and IVS neuroblastoma correlate with age, tumor biology, and survival. J Pediatr Hematol Oncol, 1999. 21(3): p. 181-9.
7. Grimmer, M.R. and W.A. Weiss, Childhood tumors of the nervous system as disorders of normal development. Curr Opin Pediatr, 2006. 18(6): p. 634-8.
8. Westermark, U.K., et al., The MYCN oncogene and differentiation in neuroblastoma. Semin Cancer Biol, 2011. 21(4): p. 256-66.
9. Otte, J., et al., MYCN Function in Neuroblastoma Development. Front Oncol, 2020. 10: p. 624079.
10. Louis, C.U. and J.M. Shohet, Neuroblastoma: molecular pathogenesis and therapy. Annu Rev Med, 2015. 66: p. 49-63.
11. Barone, G., et al., New strategies in neuroblastoma: Therapeutic targeting of MYCN and ALK. Clin Cancer Res, 2013. 19(21): p. 5814-21.
12. Schwab, M., et al., Enhanced expression of the human gene N-myc consequent to amplification of DNA may contribute to malignant progression of neuroblastoma. Proc Natl Acad Sci U S A, 1984. 81(15): p. 4940-4.
13. Zaizen, Y., et al., The effect of N-myc amplification and expression on invasiveness of neuroblastoma cells. J Pediatr Surg, 1993. 28(6): p. 766-9.
14. Bénard, J., Genetic alterations associated with metastatic dissemination and chemoresistance in neuroblastoma. Eur J Cancer, 1995. 31a(4): p. 560-4.
15. Goodman, L.A., et al., Modulation of N-myc expression alters the invasiveness of neuroblastoma. Clin Exp Metastasis, 1997. 15(2): p. 130-9.
16. Beierle, E.A., et al., N-MYC regulates focal adhesion kinase expression in human neuroblastoma. J Biol Chem, 2007. 282(17): p. 12503-16.
17. Megison, M.L., et al., FAK inhibition decreases cell invasion, migration and metastasis in MYCN amplified neuroblastoma. Clin Exp Metastasis, 2013. 30(5): p. 555-68.
18. Tan, Y.T., et al., LncRNA‐mediated posttranslational modifications and reprogramming of energy metabolism in cancer. Cancer Communications, 2021. 41(2): p. 109-120.
19. Yao, R.W., Y. Wang, and L.L. Chen, Cellular functions of long noncoding RNAs. Nat Cell Biol, 2019. 21(5): p. 542-551.
20. Kopp, F. and J.T. Mendell, Functional Classification and Experimental Dissection of Long Noncoding RNAs. Cell, 2018. 172(3): p. 393-407.
21. Wang, K.C. and H.Y. Chang, Molecular mechanisms of long noncoding RNAs. Mol Cell, 2011. 43(6): p. 904-14.
22. Yang, R., et al., LncRNA AC142119.1 facilitates the progression of neuroblastoma by epigenetically initiating the transcription of MYCN. Journal of Translational Medicine, 2023. 21(1): p. 659.
23. Kewley, R.J., M.L. Whitelaw, and A. Chapman-Smith, The mammalian basic helix-loop-helix/PAS family of transcriptional regulators. Int J Biochem Cell Biol, 2004. 36(2): p. 189-204.
24. Jones, S., An overview of the basic helix-loop-helix proteins. Genome Biology, 2004. 5(6): p. 226.
25. Schmidt, J.V., et al., Characterization of a murine Ahr null allele: involvement of the Ah receptor in hepatic growth and development. Proc Natl Acad Sci U S A, 1996. 93(13): p. 6731-6.
26. Xu, C.X., et al., Aryl hydrocarbon receptor deficiency protects mice from diet-induced adiposity and metabolic disorders through increased energy expenditure. Int J Obes (Lond), 2015. 39(8): p. 1300-1309.
27. Hankinson, O., The aryl hydrocarbon receptor complex. Annu Rev Pharmacol Toxicol, 1995. 35: p. 307-40.
28. Barouki, R., X. Coumoul, and P.M. Fernandez-Salguero, The aryl hydrocarbon receptor, more than a xenobiotic-interacting protein. FEBS Lett, 2007. 581(19): p. 3608-15.
29. Fujii-Kuriyama, Y. and K. Kawajiri, Molecular mechanisms of the physiological functions of the aryl hydrocarbon (dioxin) receptor, a multifunctional regulator that senses and responds to environmental stimuli. Proc Jpn Acad Ser B Phys Biol Sci, 2010. 86(1): p. 40-53.
30. Denison, M.S. and S. Heath-Pagliuso, The Ah receptor: a regulator of the biochemical and toxicological actions of structurally diverse chemicals. Bull Environ Contam Toxicol, 1998. 61(5): p. 557-68.
31. Nagy, S.R., et al., Development of a green fluorescent protein-based cell bioassay for the rapid and inexpensive detection and characterization of ah receptor agonists. Toxicol Sci, 2002. 65(2): p. 200-10.
32. Nagy, S.R., et al., Identification of novel Ah receptor agonists using a high-throughput green fluorescent protein-based recombinant cell bioassay. Biochemistry, 2002. 41(3): p. 861-8.
33. Denison, M.S. and S.R. Nagy, Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu Rev Pharmacol Toxicol, 2003. 43: p. 309-34.
34. Rannug, U., et al., Structure elucidation of two tryptophan-derived, high affinity Ah receptor ligands. Chem Biol, 1995. 2(12): p. 841-5.
35. Adachi, J., et al., Indirubin and indigo are potent aryl hydrocarbon receptor ligands present in human urine. J Biol Chem, 2001. 276(34): p. 31475-8.
36. Heath-Pagliuso, S., et al., Activation of the Ah receptor by tryptophan and tryptophan metabolites. Biochemistry, 1998. 37(33): p. 11508-15.
37. Opitz, C.A., et al., An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature, 2011. 478(7368): p. 197-203.
38. Daley, W.P., S.B. Peters, and M. Larsen, Extracellular matrix dynamics in development and regenerative medicine. Journal of cell science, 2008. 121(3): p. 255-264.
39. Riecke, K., et al., Low doses of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin increase transforming growth factor β and cause myocardial fibrosis in marmosets (Callithrix jacchus). Archives of toxicology, 2002. 76.
40. Nottebrock, C., et al., Effects of 2, 3, 7, 8-tetrachloro-dibenzo-p-dioxin on the extracellular matrix of the thymus in juvenile marmosets (Callithrix jacchus). Toxicology, 2006. 226(2-3): p. 197-207.
41. Thackaberry, E., et al., Toxicogenomic profile of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin in the murine fetal heart: modulation of cell cycle and extracellular matrix genes. Toxicological Sciences, 2005. 88(1): p. 231-241.
42. Aragon, A.C., et al., In utero and lactational 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin exposure: effects on fetal and adult cardiac gene expression and adult cardiac and renal morphology. Toxicological sciences, 2008. 101(2): p. 321-330.
43. Larigot, L., et al., AhR signaling pathways and regulatory functions. Biochim Open, 2018. 7: p. 1-9.
44. Ohira, M., et al., Expression profiling using a tumor-specific cDNA microarray predicts the prognosis of intermediate risk neuroblastomas. Cancer Cell, 2005. 7(4): p. 337-350.
45. Wu, P.-Y., et al., Aryl Hydrocarbon Receptor Downregulates MYCN Expression and Promotes Cell Differentiation of Neuroblastoma. PLOS ONE, 2014. 9(2): p. e88795.
46. Wu, P.Y., et al., Aryl hydrocarbon receptor downregulates MYCN expression and promotes cell differentiation of neuroblastoma. PLoS One, 2014. 9(2): p. e88795.
47. Wu, P.Y., et al., Activation of Aryl Hydrocarbon Receptor by Kynurenine Impairs Progression and Metastasis of Neuroblastoma. Cancer Res, 2019. 79(21): p. 5550-5562.
48. Kalluri, R. and E.G. Neilson, Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest, 2003. 112(12): p. 1776-84.
49. Zhao, R., Z. Wu, and Q. Zhou, [Epithelial-mesenchymal transition and tumor metastasis]. Zhongguo Fei Ai Za Zhi, 2011. 14(7): p. 620-4.
50. Kalluri, R. and R.A. Weinberg, The basics of epithelial-mesenchymal transition. J Clin Invest, 2009. 119(6): p. 1420-8.
51. Aizawa, H. and H. Tagami, Delayed tissue necrosis due to mitomycin C. Acta Derm Venereol, 1987. 67(4): p. 364-6.
52. Miles, F.L., et al., Stepping out of the flow: capillary extravasation in cancer metastasis. Clin Exp Metastasis, 2008. 25(4): p. 305-24.
53. Hlubek, F., et al., Beta-catenin activates a coordinated expression of the proinvasive factors laminin-5 gamma2 chain and MT1-MMP in colorectal carcinomas. Int J Cancer, 2004. 108(2): p. 321-6.
54. Gavert, N., et al., L1, a novel target of beta-catenin signaling, transforms cells and is expressed at the invasive front of colon cancers. J Cell Biol, 2005. 168(4): p. 633-42.
55. Yang, J., et al., Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell, 2004. 117(7): p. 927-39.
56. Zeisberg, M. and E.G. Neilson, Biomarkers for epithelial-mesenchymal transitions. J Clin Invest, 2009. 119(6): p. 1429-37.
57. Lee, J.M., et al., The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol, 2006. 172(7): p. 973-81.
58. Yang, J. and R.A. Weinberg, Epithelial-Mesenchymal Transition: At the Crossroads of Development and Tumor Metastasis. Developmental Cell, 2008. 14(6): p. 818-829.
59. Antkiewicz, D.S., et al., Heart malformation is an early response to TCDD in embryonic zebrafish. Toxicol Sci, 2005. 84(2): p. 368-77.
60. Hay, E.D. and A. Zuk, Transformations between epithelium and mesenchyme: Normal, pathological, and experimentally induced. American Journal of Kidney Diseases, 1995. 26(4): p. 678-690.
61. Huber, M.A., N. Kraut, and H. Beug, Molecular requirements for epithelial–mesenchymal transition during tumor progression. Current Opinion in Cell Biology, 2005. 17(5): p. 548-558.
62. Puisieux, A., T. Brabletz, and J. Caramel, Oncogenic roles of EMT-inducing transcription factors. Nature Cell Biology, 2014. 16(6): p. 488-494.
63. Morgan, M.R., M.J. Humphries, and M.D. Bass, Synergistic control of cell adhesion by integrins and syndecans. Nature Reviews Molecular Cell Biology, 2007. 8(12): p. 957-969.
64. Halbleib, J.M. and W.J. Nelson, Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev, 2006. 20(23): p. 3199-214.
65. Yan, Q., et al., Reduced T-cadherin expression and promoter methylation are associated with the development and progression of hepatocellular carcinoma. Int J Oncol, 2008. 32(5): p. 1057-63.
66. Niermann, T., et al., Aryl hydrocarbon receptor ligands repress T-cadherin expression in vascular smooth muscle cells. Biochem Biophys Res Commun, 2003. 300(4): p. 943-9.
67. Thackaberry, E.A., et al., Toxicogenomic profile of 2,3,7,8-tetrachlorodibenzo-p-dioxin in the murine fetal heart: modulation of cell cycle and extracellular matrix genes. Toxicol Sci, 2005. 88(1): p. 231-41.
68. Dietrich, C., et al., TCDD-dependent downregulation of gamma-catenin in rat liver epithelial cells (WB-F344). Int J Cancer, 2003. 103(4): p. 435-9.
69. Wu, P.Y., et al., Novel Endogenous Ligands of Aryl Hydrocarbon Receptor Mediate Neural Development and Differentiation of Neuroblastoma. ACS Chem Neurosci, 2019. 10(9): p. 4031-4042.