| 研究生: |
李嘉信 Jia-Shin Li |
|---|---|
| 論文名稱: |
跨平台推薦系統,基於Facebook使用者特質推薦Instagram熱門帳號 |
| 指導教授: |
陳彥良
Yan-Liang chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 資訊管理學系 Department of Information Management |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 推薦 、社群媒體 、Facebook 、Instagram |
| 外文關鍵詞: | Recommendation, social media, Facebook, Instagram |
| 相關次數: | 點閱:22 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著社交媒體在人們生活中扮演的角色越來越重要,吸引了各個商業圈、研究圈投入的大量資金與研究。因此,該如何有效的提高社交媒體向目的客戶群分發相關的資訊及廣告已經變成了一個非常重要的問題。且由於社交媒體的普及化,導致擁有大量知識豐富的用戶參與,因此社交媒體更可以視為一項支持用戶下決策的有力參考因素。甚至於用戶會受到自己的朋友或追蹤者的影響而受到對同類型事物很大程度的喜好度影響。但大多數的社交媒體個性化推薦服務都基於單一平 台用戶建模。這可能將會遇到 數據短缺和用戶數量不足等 問題。 在本文中,我們通過彙整兩大社群平台的用戶資訊,分別為 Facebook不公開使用者資訊 與 Instagram公開熱門帳號資訊 。並建立跨平台推薦模型作為解決方案。傳統推 薦方法通常需要對推薦目標有非常多的資訊才會有較好的推薦效果,相反的,當對目 標的特質、興趣不太了解的時候,效果就會變差。而本文提出的辦法與傳統方法不一 樣的是我們可以克服對目標資訊不足時還可以 擁 有不錯的推薦效果。 本文 透過 分析兩大目標 平台的用戶行為資訊 並使用基於內容 (Content base)的方法 考量兩者 間 的特質相關性。並嚴謹的設計實驗且透過號招實際用戶幫助我們證明此方 法的有效性。
Currently, although many recommended system applications are launched, usually these recommended applications are executed on the same platform. These single-platform recommendation systems face two challenges. The first problem is the lack of data that can be referenced and used in the recommendation system. For example, for the Facebook platform, the recommended material can only come from the Facebook community itself, not from Instagram. The second problem is the problem of insufficient number of users. For example, advertisers on Instagram can only send their ads to users on Instagram, not Facebook users. In response to these two problems, this paper proposes a cross-platform recommendation system from Facebook to Instagram. This has two advantages. First, the data of the two platforms can be integrated and complement each other, thereby greatly expanding the source and richness of recommended data. Second, Instagram advertisers can not only send ads to users on the same platform, but to Facebook users with the same preferences. This can help the system expand its customer base and help better target marketing. Finally, we use a series of experiments to prove the effectiveness of the entire method. Experimental results show that this method has a good effect on the similarity analysis of Facebook users and Instagram popular accounts, and the recommendation results also highly match the user's preferences.
Abel, F., Herder, E., Houben, G.-J., Henze, N., & Krause, D. (2013). Cross-system user modeling and personalization on the social web. User Modeling and User-Adapted Interaction, 23(2-3), 169-209.
Aghdam, S. M., & Navimipour, N. J. (2016). Opinion leaders selection in the social networks based on trust relationships propagation. Karbala International Journal of Modern Science, 2(2), 88-97.
Al-Sharawneh, J., & Williams, M.-A. (2010). Credibility-based social network recommendation: Follow the leader. Paper presented at the ACIS 2010 Proceedings-21st Australasian Conference on Information Systems.
Bach, N. X., Do Hai, N., & Phuong, T. M. (2016). Personalized recommendation of stories for commenting in forum-based social media. Information Sciences, 352, 48-60.
Buda, A., & Jarynowski, A. (2010). Life time of correlations and its applications: Andrzej Buda Wydawnictwo NiezaleĹĽne.
Castro, J., Lu, J., Zhang, G., Dong, Y., & Martínez, L. (2017). Opinion dynamics-based group recommender systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48(12), 2394-2406.
Clements, M., Serdyukov, P., de Vries, A. P., & Reinders, M. J. (2011). Personalised travel recommendation based on location co-occurrence. arXiv preprint arXiv:1106.5213.
Cohen, J. (1988). Statistical power analysis for the social sciences.
Diao, Q., Qiu, M., Wu, C.-Y., Smola, A. J., Jiang, J., & Wang, C. (2014). Jointly modeling aspects, ratings and sentiments for movie recommendation (JMARS). Paper presented at the Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining.
Dooms, S., De Pessemier, T., & Martens, L. (2013). Movietweetings: a movie rating dataset collected from twitter. Paper presented at the Workshop on Crowdsourcing and human computation for recommender systems, CrowdRec at RecSys.
Erdoğmuş, İ. E., & Cicek, M. (2012). The impact of social media marketing on brand loyalty. Procedia-Social and Behavioral Sciences, 58, 1353-1360.
Esparza, S. G., O’Mahony, M. P., & Smyth, B. (2012). Mining the real-time web: a novel approach to product recommendation. Knowledge-Based Systems, 29, 3-11.
Frolov, E., & Oseledets, I. (2018). Revealing the Unobserved by Linking Collaborative Behavior and Side Knowledge. arXiv preprint arXiv:1807.10634.
Godin, F., Slavkovikj, V., De Neve, W., Schrauwen, B., & Van de Walle, R. (2013). Using topic models for twitter hashtag recommendation. Paper presented at the Proceedings of the 22nd International Conference on World Wide Web.
Goh, K.-I., Cusick, M. E., Valle, D., Childs, B., Vidal, M., & Barabási, A.-L. (2007). The human disease network. Proceedings of the national academy of sciences, 104(21), 8685-8690.
Gou, L., You, F., Guo, J., Wu, L., & Zhang, X. (2011). Sfviz: interest-based friends exploration and recommendation in social networks. Paper presented at the Proceedings of the 2011 Visual Information Communication-International Symposium.
He, C., Parra, D., & Verbert, K. (2016). Interactive recommender systems: A survey of the state of the art and future research challenges and opportunities. Expert Systems with Applications, 56, 9-27.
Kywe, S. M., Hoang, T.-A., Lim, E.-P., & Zhu, F. (2012). On recommending hashtags in twitter networks. Paper presented at the International conference on social informatics.
Lee Rodgers, J., & Nicewander, W. A. (1988). Thirteen ways to look at the correlation coefficient. The American Statistician, 42(1), 59-66.
Li, F., & Du, T. C. (2011). Who is talking? An ontology-based opinion leader identification framework for word-of-mouth marketing in online social blogs. Decision Support Systems, 51(1), 190-197.
Li, Q., Wang, J., Chen, Y. P., & Lin, Z. (2010). User comments for news recommendation in forum-based social media. Information Sciences, 180(24), 4929-4939.
Li, Y.-M., Lin, L.-F., & Ho, C.-C. (2017). A social route recommender mechanism for store shopping support. Decision Support Systems, 94, 97-108.
Li, Y., Ma, S., Zhang, Y., & Huang, R. (2013). An improved mix framework for opinion leader identification in online learning communities. Knowledge-Based Systems, 43, 43-51.
Lin, L.-F., Li, Y.-M., & Wu, W.-H. (2015). A social endorsing mechanism for target advertisement diffusion. Information & Management, 52(8), 982-997.
Mendat, D. R., Cassidy, A. S., Zarrella, G., & Andreou, A. G. (2018). Word2vec word similarities on IBM's TrueNorth neurosynaptic system. Paper presented at the 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS).
Mihalcea, R., & Tarau, P. (2004). Textrank: Bringing order into text. Paper presented at the Proceedings of the 2004 conference on empirical methods in natural language processing.
Onnela, J.-P., Saramäki, J., Hyvönen, J., Szabó, G., Lazer, D., Kaski, K., . . . Barabási, A.-L. (2007). Structure and tie strengths in mobile communication networks. Proceedings of the national academy of sciences, 104(18), 7332-7336.
Papadimitriou, A., Symeonidis, P., & Manolopoulos, Y. (2012). Fast and accurate link prediction in social networking systems. Journal of Systems and Software, 85(9), 2119-2132.
Pauws, S., & Eggen, B. (2002). PATS: Realization and user evaluation of an automatic playlist generator. Paper presented at the ISMIR.
Pazzani, M. J., & Billsus, D. (2007). Content-based recommendation systems. In The adaptive web (pp. 325-341): Springer.
Roberts, S. G., Wilson, R., Fedurek, P., & Dunbar, R. (2008). Individual differences and personal social network size and structure. Personality and individual differences, 44(4), 954-964.
Sevli, O., & Küçüksille, E. U. (2017). Advertising recommendation system based on dynamic data analysis on Turkish speaking Twitter users. Tehnicki Vjesnik, 24(2), 571-578.
She, J., & Chen, L. (2014). Tomoha: Topic model-based hashtag recommendation on twitter. Paper presented at the Proceedings of the 23rd International Conference on World Wide Web.
Si, Y., Zhang, F., & Liu, W. (2019). An adaptive point-of-interest recommendation method for location-based social networks based on user activity and spatial features. Knowledge-Based Systems, 163, 267-282.
Stigler, S. M. (1989). Francis Galton's account of the invention of correlation. Statistical Science, 73-79.
Subramaniyaswamy, V., Vijayakumar, V., Logesh, R., & Indragandhi, V. (2015). Intelligent travel recommendation system by mining attributes from community contributed photos. Procedia Computer Science, 50, 447-455.
Tsai, W., & Ghoshal, S. (1998). Social capital and value creation: The role of intrafirm networks. Academy of management Journal, 41(4), 464-476.
Victor, P., Cornelis, C., De Cock, M., & Teredesai, A. M. (2009). A comparative analysis of trust-enhanced recommenders for controversial items. Paper presented at the Third International AAAI Conference on Weblogs and Social Media.
Wang, Z., Liao, J., Cao, Q., Qi, H., & Wang, Z. (2014). Friendbook: a semantic-based friend recommendation system for social networks. IEEE transactions on mobile computing, 14(3), 538-551.
Wang, Z., Yu, X., Feng, N., & Wang, Z. (2014). An improved collaborative movie recommendation system using computational intelligence. Journal of Visual Languages & Computing, 25(6), 667-675.
Wei, S., Zheng, X., Chen, D., & Chen, C. (2016). A hybrid approach for movie recommendation via tags and ratings. Electronic Commerce Research and Applications, 18, 83-94.
Wen, Y.-T., Cho, K.-J., Peng, W.-C., Yeo, J., & Hwang, S.-w. (2015). KSTR: Keyword-aware skyline travel route recommendation. Paper presented at the 2015 IEEE international conference on data mining.
Zavadskas, E. K., & Turskis, Z. (2010). A new additive ratio assessment (ARAS) method in multicriteria decision‐making. Technological and Economic Development of Economy, 16(2), 159-172.
Zhao, F., Zhu, Y., Jin, H., & Yang, L. T. (2016). A personalized hashtag recommendation approach using LDA-based topic model in microblog environment. Future Generation Computer Systems, 65, 196-206.
Zhao, W. X., Li, S., He, Y., Wang, L., Wen, J.-R., & Li, X. (2016). Exploring demographic information in social media for product recommendation. Knowledge and Information Systems, 49(1), 61-89.
Zhao, X. W., Guo, Y., He, Y., Jiang, H., Wu, Y., & Li, X. (2014). We know what you want to buy: a demographic-based system for product recommendation on microblogs. Paper presented at the Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining.
Zhou, T., Medo, M., Cimini, G., Zhang, Z.-K., & Zhang, Y.-C. (2011). Emergence of scale-free leadership structure in social recommender systems. PLoS One, 6(7).
行銷人 (Producer). (2018). 臺灣網路社群趨勢全分析. Retrieved from https://www.marketersgo.com/marketing/201804/2017-social-media-analysis-report/