跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳弘斌
Hung-Bin Chen
論文名稱: 鍺/矽/鍺多層量子點結構之光學特性研究
Optical properties of Ge/Si/Ge quantum dot in multilayer structure
指導教授: 徐子民
T. M. Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
畢業學年度: 99
語文別: 中文
論文頁數: 67
中文關鍵詞: 鍺量子點光學
外文關鍵詞: Ge quantum dots, optical properties
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用光致螢光光譜來分析鍺/矽/鍺量子點結構的光學特性,並對試片做快速熱退火處理來嘗試改善發光效益,同時與鍺/矽量子點結構的量測結果做比較,研究結構上的差異對光譜能量和強度上的影響。由不同熱退火溫度試片的螢光能量與激發功率的分析中,我們得知鍺/矽/鍺量子點結構的原子擴散程度較高,有著較高的螢光能量和較淺的載子侷限位能。由不同量測溫度下螢光強度與激發功率的分析中,我們得知被侷限在缺陷中的電子在低溫下會吸收螢光,降低發光的效益。最後我們從螢光強度與量測溫度的分析中,得知鍺/矽/鍺量子點有著較高的活化能,推測電洞可藉由穿隧效應存在長晶方向上鄰近的量子點內。


    In this paper, we have studied the optical properties of Ge/Si/Ge quantum dots (QDs) structure by using Photoluminescence (PL) spectroscopy.And we use rapid thermal annealing process to improve its light efficiency.Comparing the PL measurements of Ge/Si/Ge QDs structure with Ge/Si QDs structure, the structural difference effect on optical properties is studied.
    According to the emission energy of annealed samples in excitation-powerdependent PL measurements, we found that Ge/Si/Ge QDs structure has higher emission energy and lower carriers confinement depth due to atomic intermixing
    effect. According to the PL intensity with power sublinear relation at different temperature measurements, we suggest that the defect has negative effect on light efficiency because emitting light will be absorbed by the electrons confined in the defect. Finally, we found that the Ge/Si/Ge QDs structure has higher activation energy from Temperature-dependent PL measurements. Therefore, we
    point out that the holes in Ge/Si/Ge QDs structure probably can exist on nearby QDs by tunneling effect.

    中文摘要 ........................................... i 英文摘要 ............................................ ii 致謝 ................................................ iii 目錄 ............................................... iV 圖目 ................................................ Vi 第一章 簡介 ..................................... 1 第二章 基本原理 ................................. 4 2-1 矽鍺量子點與其能帶結構 ............. . 4 2-1.1 應力作用 ......................... 4 2-1.2 原子相互擴散 ..................... 8 2-2 界面電場對矽鍺量子點能帶結構的影響 .... 10 第三章 樣品結構與實驗技術 ........................ 15 3-1 鍺矽鍺量子點與鍺量子點試片結構 ....... 14 3-2 光致螢光光譜實驗系統 .................... 19 第四章 實驗結果與討論 ........................... . 22 4-1 光激發量測結果 ......................... 22 4-1-1 光激發螢光光譜 .................. 22 4-1-2 改變激發功率的量測結果 ........ 25 4-2 經熱退火處理後的光激發量測結果 ........ 37 第五章 結論 ...................................... 52 參考文獻 ............................................. 53

    [1] Gruhle, A. et al. ,”91 GHz SiGe HBTs grown by MBE”, Electron Lett. 29, 415 (1993)
    [2] O’Neill, A.G. et al. ,”Deep submicron CMOS based on silicon germanium technology”,
    IEEE. Trans. Electron Devcices 43, 911 (1996)
    [3] R. P. G. Karunasiri. et al. ,” Infrared photodetectors with SiGe/Si multiple quantum wells”,
    Opt. Eng(Bellingham) 33, 1468 (1994)
    [4] J. C. Sturm. et al. ,” Well-resolved band-edge photoluminescence of excitons confined in
    strained Si1-xGex quantum wells”, Phys. Rev. Lett. 66, 1362 (1911)
    [5] L. Vescan. et al. ,” Optical and structural investigation of SiGe/Si quantum wells”, Appl.
    Phys. Lett. 60, 2183 (1992)
    [6] S. Fukatsu. et al. ,” High‐temperature operation of strained Si0.65Ge0.35/Si(111) p‐type
    multiple‐quantum‐well light‐emitting diode grown by solid source Si molecular‐beam
    epitaxy”, Appl. Phys. Lett. 63, 967 (1993)
    [7] S. Fukatsu. et al. ,” Optical and structural investigation of SiGe/Si quantum wells”, Appl.
    Phys. Lett. 71, 258 (1997)
    [8] O. G. Schmidt et al. ,” Multiple layers of self-asssembled Ge/Si islands:Photoluminescence,
    strain fields, material interdiffusion, and island formation”, Phys. Rev. B 61, 13721 (2000)
    [9] Wen-Hao Chang et al. ,” Effects of spacer thickness on optical properties of stacked Ge/Si
    quantum dots grown by chemical vapor deposition”, J. Appl. Phys. 93, 4999 (2003);
    [10] Vinh Le Thanh et al. ,” Vertically self-organized Ge/Si(001) quantum dots in multilayer
    structures”, Phys. Rev. B 60, 5851 (1999)
    [11] P. S. Chen et al. ,” Improvement of photoluminescence efficiency in stacked Ge/Si/Ge
    quantum dots with a thin Si spacer”, phys. stat. sol. (b) 241, No. 15, 3650–3655 (2004)
    [12] Lianfeng Yang et al. ,” Si/SiGe heterostructure parameters for device simulations”,
    Semicond. Sci. Technol. 19 (2004) 1174-1182
    [13] J. H. Seok et al. ,” Electronic structure and compositional interdiffusion in self-assembled
    Ge quantum dots on Si(001)”, Appl. Phys. Lett. 78, 3124 (2001)
    [14] Chris G. Van de Walle ,” Band lineups and deformation potentials in the model-solid
    theory”, Phys. Rev. B 39, 1871 (1989)
    [15] M. W. Dashiell et al. ,” Photoluminescence investigation of phononless radiative
    recombination and thermal-stability of germanium hut clusters on silicon(001)”, Appl. Phys.
    Lett. 79, 2261 (2001)
    [16] T. Baier et al. ,” Type-II band alignment in Si/Si1-xGex quantum wells from
    photoluminescence line shifts due to optically induced band-bending effects: Experiment and
    theory”, Phys. Rev. B 50, 15191 (1994)
    [17] Y. S. Chiu et al. ,” Properties of photoluminescence in type-II GaAsSb/GaAs multiple
    quantum wells”, J. Appl. Phys. 92, 5810 (2002)
    [18] T. T. Chen et al. ,” Unusual optical properties of type-II InAs⁄GaAs0.7Sb0.3 quantum dots by
    photoluminescence studies”, Phys. Rev. B 75, 033310 (2007)
    [19] O. G. Schmidt et al. ,” Modified Stranski–Krastanov growth in stacked layers of
    self-assembled islands”, Appl. Phys. Lett. 74, 1272 (1999)
    [20] G. Bremond et al. ,” Optical study of germanium nanostructures grown on a Si(118)
    vicinal substrate”, Microelectronics Journal 30 (1999) 357–362
    [21] H. Sunamura et al. ,” Island formation during growth of Ge on Si(100): A study using
    photoluminescence spectroscopy”, Appl. Phys. Lett. 66, 3024 (1995)
    [22] Alexander V. Kolobov et al. ,” Local structure of uncapped and Si-capped Ge/Si(100)
    self-assembled quantum dots”, Appl. Phys. Lett. 78, 451(2001)
    [23] C. M. Wei et al. ,” In-plane optical anisotropy in self-assembled Ge quantum dots
    induced by interfacial chemical bonds”, Appl. Phys. Lett. 90, 061912 (2007)
    [24] J. Wan et al. ,” Band alignments and photon-induced carrier transfer from wetting layers
    to Ge islands grown on Si(001)”, Appl. Phys. Lett. 78, 1763 (2001)
    [25] J. Wan et al. ,” Effects of interdiffusion on the band alignment of GeSi dots”, Appl. Phys.Lett. 79, 1980 (2001)
    [26] W.-H. Chang et al. ,” Room-temperature electroluminescence at 1.3 and 1.5 mm from
    Ge/Si self-assembled quantum dots”, Appl. Phys. Lett. 83,2958 (2003)
    [27] R. Apetz et al. ,” Photoluminescence and electroluminescence of SiGe dots fabricated by
    island growth”, Appl. Phys. Lett. 66, 445 (1995)
    [28] J. Weber et al. ,” Near-band-gap photoluminescence of Si-Ge alloys”, Phys. Rev. B 40,
    5683 (1989)
    [29] QiJia Cai et al. ,” The effects of thermal annealing in self-assembled Ge/Si quantum
    dots”, Applied Surface Science 253 (2007) 4792–4795
    [30] J. Weber et al. ,” Type-II band alignment in Si/Si1-xGex quantum wells from
    photoluminescence line shifts due to optically induced band-bending effects: Experiment and
    theory”, Phys. Rev. B 50, 15191 (1994)
    [31] A. I. Yakimov et al. ,” Enhanced oscillator strength of interband transitions in coupled
    Ge/Si quantum dots”, Appl. Phys. Lett. 93, 132105 (2008)
    [32] C. Weisbuch, B. Vinter, Quantum Semiconductor Structures (Academic,Boston, 1991),
    p. 20.
    [33] C. Dais et al.,”Photoluminecene studies of SiGe quantum

    QR CODE
    :::