跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林佑安
Yu-An Lin
論文名稱: 多孔性碳材應用於質子交換膜燃料電池觸媒層之研究
Study of porous carbon applied on catalyst layer of proton exchange membrane fuel cell
指導教授: 曾重仁
Chung-jen Tseng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 能源工程研究所
Graduate Institute of Energy Engineering
畢業學年度: 97
語文別: 中文
論文頁數: 100
中文關鍵詞: 燃料電池觸媒層多孔性碳矽微粒
外文關鍵詞: silica particle, porous carbon, fuel cell, catalyst layer
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多孔性碳材傳統上多利用於觸媒載體,由於其多孔特性可增加承載面積及分散觸媒,避免觸媒顆粒聚集擴大,因此廣用於擔載貴重金屬觸媒。本研究主要探討多孔性碳材應用於質子交換膜燃料電池觸媒層上的製程與其活性表面積表現。論文中討論:
    (1)不同參數以降低矽微粒粒徑(2)以不同方式排列矽微粒於碳紙上
    (3)不同碳化前驅物所作出的碳材結構(4)不同粒徑的矽微粒所作出的碳材比表面積及孔徑分析(5)不同參數所還原的鉑顆粒粒徑與活性表面積
    本研究結果顯示,藉由改變甲醇能順利降低矽微粒粒徑,製備粒徑範圍可由6nm至450nm;在矽微粒方面排列以熱乾燥法能使矽微粒有較好的排列情況;碳化前驅物則使用甲醛苯酚樹脂所作出的結構比使用葡萄糖或蔗糖的結構堅固且完整;碳材比表面積部分,大孔徑的碳材因具有相當高的微孔結構,因此比表面積可達2393m2/g,而就改變參數討論活性表面積與觸媒顆粒部份,實驗中最佳的活性表面積為14.4m2/g,而粒徑由TEM觀察,大部分皆在5nm以下。


    Porous carbons are frequently used as the catalyst support due to their high porosity. They have large surface area for catalyst support. The supported catalysts usually also have good dispersion. Porous carbons are therefore suitable for supporting noble catalysts. This study focused on the preparation process and the resulting specific surface area of porous carbons as applied as the catalyst support for the proton exchange membrane fuel cells.
    The primary focuses include: (a) the effects of various process parameters on the size of silica particles, (b) effects of various process parameters on the orderness of silica particle array on the carbon paper, (c) effects of different carbonization precursor on the carbonized structure of the resulting mesoporous carbons, (d) the effects of the silica particle size on specific surface area of the resulting mesoporous carbons, and (e) the effects of various process parameters on the size of platinum particles and their specific surface area.
    The results show that by changing the amount of methanol used, we can obtain silica particles of sizes ranging from 450 nm to 6 nm. Using thermal drying method leads to better silica particle array. Phenol formaldehyde resin is a better carbonization precursor than glucose or sucrose for the present process. The structure of the resulting mesoporous carbon is stronger and more complete, and the specific surface area can reach 2393 m2/g. Finally, the particle size of the deposited platinum is approximately between 2 and 5 nm, and the best specific surface area of the platinum catalyst is 14.4 m2 / g.
    Key words: fuel cell, silica particle, porous carbon, catalyst layer

    摘要.....i Abstract.ii 誌謝.....iii 目錄.....v 圖目錄...viii 表目錄...xii 第一章...緒論.....1 1-1.前言.....1 1-2.質子交換膜燃料電池基本原理.....4 1-3.研究目的.....8 第二章...文獻回顧..9 2-1.碳載體比較與燃料電池上的應用.....9 2-1-1.碳載體的比較.....9 2-1-2.多孔性碳材用於燃料電池的過去情況.....11 2-2.多孔性材製作方式.....12 2-2-1.模板法.....12 2-2-2.溶膠凝膠法製作矽微粒.....13 2-2-2-1.溶膠凝膠法 .....13 2-2-2-2.溶膠凝膠法製作多孔性材.....14 2-2-2-3.矽微粒排列..... 14 2-3.碳化前驅物.....15 2-3-1.碳化.....15 2-3-2.前驅物種類.....16 2-4.觸媒製備方式.....16 第三章...研究方法與進行步驟.....19 3-1.實驗儀器設備.....19 3-2.實驗藥品.....20 3-3.實驗步驟.....21 3-3-1.矽微粒合成.....21 3-3-2.電泳沉積.....21 3-3-3.碳化及氫氟酸腐蝕.....21 3-3-4.置放鉑顆粒.....22 3-4.分析儀器.....23 3-4-1.掃描式電子顯微鏡(SEM)分析.....23 3-4-2.X-ray 繞射分析(XRD).....24 3-4-3.BET 比表面積分析以及孔洞結構分析.....25 3-4-4.動態雷射掃描分析(DLS)..... 27 3-4-5.穿透式顯微鏡(TEM).....27 3-4-6.循環伏安法(CV).....28 第四章....結果與討論.....31 4-1.矽微粒粒徑之影響.....31 4-2.矽微粒沉積與排列.....40 4-2-1.沉積與排列結果與討論.....40 4-2-2.附圖.....42 4-3.碳化前驅物對多孔性碳材結構之影響.....46 4-3-1.碳化前驅物結果與討論.....46 4-3-2.附圖.....48 4-4.不同粒徑製備多孔性碳之比表面積與孔徑分佈.....57 4-4-1.比表面積結果與討論.....57 4-4-2.表與附圖.....59 4-5.觸媒粒徑與活性表面積.....64 4-5-1.粒徑與活性表面積結果與討論.....64 4-5-2.表與附圖.....68 第五章....結論與未來方向.....78 參考文獻..81

    1.H. Yamada, T. Hirai, I. Moriguchi, T. Kudo, “A highly active Pt catalyst fabricated on 3D porous carbon,” Journal of Power Sources, Vol.164, pp.538–543, (2007)
    2.J. S. Yu, S. Kang, S. B. Yoon, G. Chai, “Fabrication of ordered uniform porous carbon networks and their application to a catalyst supporter,” Journal of the American Chemical Society, Vol.124, pp.9382-9383, (2002)
    3.J. B. Joo, P. Kim, W. Kim, J. Kim, J. Yi, “Preparation of mesoporous carbon templated by silica particles for use as a catalyst support in polymer electrolyte membrane fuel cells,” Catalysis Today, Vol.111, pp.171–175, (2006)
    4.K. Jiang, Y. Wang, J. Dong, L. Gui, Y. Tang, “Electrodeposited metal sulfide semiconductor films with ordered nanohole array structures," Langmuir, Vol.17, pp.3635-3638, (2001)
    5.T. Yanagishita, K. Nishio, H. Msuda, “Fabrication of metal nanohole array with high asoect ratios using two-step replication of anodic porous alumina,” Advance Material, Vol.17, pp.2241-2243, (2005)
    6.H. Masuda, H. Yamada, M. Satoh, H. Asoh, “Highly ordered nanochannel-array architecture in anodic alumina,” Applied Physics Letters, Vol.71, pp.2770-2772, (1997)
    7.X. S. Zhao, F. Su, Q. Yan, W. Guo, Xi. Y. Bao, L. Lv, Z. Zhou, “Templating methods for preparation of porous structures,” Journal of Materials Chemistry, Vol.16, pp.637–648, (2006)
    8.A. Manzke, C. Pfahler, O. Dubbers, A. Plettl, P. Ziemann, D. Crespy, E. Schreiber, U. Ziener, K. Landfester, “Etching masks based on miniemulsions: A novel route towards ordered arrays of surface nanostructures,” Advanced Materials, Vol.19, pp.1337–1341, (2007)
    9.K. S. Rao, K. E. Hami, T. Kodaki, K. Matsushige, K. Makino, “A novel method for synthesis of silica nanoparticles,” Journal of Colloid and Interface Science, Vol.289, pp.125–131, (2005)
    10.Q. Zhou, P. Dong , B. Cheng, “Progress in three-dimensionally ordered self-assembly of colloidal SiO2 particles,” China pariticuology, Vol.1, pp.124-130, ( 2003)
    11.W. Stober, A. Fink, E. Bohn, “Controlled growth of monodispersed silica spheres in the micron size range,” Journal of Colloid and Interface Science, Vol.26, pp.62-69, (1968)
    12.A. Stein, R. C. Schroden, “Colloidal crystal templating of three-dimensionally ordered macroporous solids: materials for photonics and beyond,” Current Opinion in Solid State and Materials Science, Vol.5, pp.553–564, (2001)
    13.L. H. Kao, T. C. Hsu, “Silica template synthesis of ordered mesoporous carbon thick films with 35-nm pore size from mesophase pitch solution,” Materials Letters, Vol.62, pp.695-698, (2008)
    14.R. Tomasi, D. Sireude, R. Marchand, Y. Scudeller, P. Guillemet, “Preparation of a thermal insulating material using electrophoretic deposition of silica particles,” Materials Science and Engineering B, Vol.137, pp.225–231, (2007)
    15.D. B. Akolekar, A. R. Hind, S. K. Bhargava, “Synthesis of Macro-, Meso-, and Microporous Carbons from Natural and Synthetic Sources, and Their Application as Adsorbents for the Removal of Quaternary Ammonium Compounds from Aqueous Solution,” Journal of colloide and interface science, Vol.199, pp.92–98, (1998)
    16.Z. Zhou, Q. Yan, F. Su, X. S. Hao, “Replicating novel carbon nanostructures with 3D macroporous silica template,” Journal of Materials Chemistry, Vol.15, pp.2569–2574, (2005)
    17.J. S. Yu, S. B. Yoon, G. S. Chai, “Ordered uniform porous carbon by carbonization of sugars,” Carbon, Vol.39, pp.1421 –1446, (2001)
    18.S. W. Woo, K. Dokko, K. Sasajima, T. Takeia, K. Kanamura, “Three-dimensionally ordered macroporous carbons having walls composed of hollow mesosized spheres,” Chemical communications, Vol.39, pp.4099–4101, (2006)
    19.S. Kang, J. S. Yu, M. Krukb ,M. Jaroniec, “Synthesis of an ordered macroporous carbon with 62 nm spherical pores that exhibit unique gas adsorption properties,” Chemical communications, Vol.16, pp.1670–1671, (2002)
    20.B. C. Satishkumar, M. V. Erasmus, J. A. Govindara, C. N. R. Rao, “The decoration of carbon nanotubes by metal nanoparticles,” Journal of Physics D: Applied Physics, Vol.29, pp.3173-3176, (1996).
    21.V. Lordi, N. Yao, J. Wei, “Method for supporting platinum on single-walled carbon nanotubes for a selective hydrogenation catalyst,” Chemistry of Materials, Vol.13, pp.733- 737, (2001).
    22.Z. Zhou, S. Wang, W. Zhou, G. Wang, L. Jiang, W. Li, S. Song, J. Liu, G. Sun, Q. Xin, “Novel synthesis of highly active Pt/C cathode electrocatalyst for direct methanol fuel cell,” Chemical communications, Vol.3, pp.394-395, (2003).
    23.P. Kim, J. B. Joo, W. Kim, H. Kim, I. K. Song, J. Yi, “Direct fabrication of Pt-supported macroporous carbon with nanoporous walls,” Letters to the Editor / Carbon, Vol.43, pp.2397–2429, (2005)
    24.V. Kamavarama, V. Veedub, A. M. Kannan, “Synthesis and characterization of platinum nanoparticles on in situ grown carbon nanotubes based carbon paper for proton exchange membrane fuel cell cathode,” Journal of Power Sources, Vol.188, pp.51–56, (2009)
    25.S. H. Joo, H. I. Lee, D. J. You, K. Kwon, J. H. Kim, Y.S. Choi, M. Kang, J.M. Kim, C. Pak, H. Chang, D. Seung, “Ordered mesoporous carbons with controlled particle sizes as catalyst supports for direct methanol fuel cell cathodes,” Carbon, Vol.46, pp.2034-2045, (2008)
    26.T. Matsoukas, E. Gulari, “Dynamics of growth of silica particles from ammonia-catalyzed hydrolysis of tetra-ethyl-orthosilicate,” Journal of Colloid and Interface Science, Vol.124, pp.252-261, (1988)

    QR CODE
    :::