跳到主要內容

簡易檢索 / 詳目顯示

研究生: 徐鸛侖
Guan-lun Hsu
論文名稱: 保全公司運鈔車護運作業風險評估暨排程規劃之研究
指導教授: 顏上堯
Shang-yao Yan
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 121
中文關鍵詞: 層級分析法風險成本運鈔車護運作業排程時空網路啟發解法
外文關鍵詞: Analytical Hierarchy Process, risk cost, cash pick-up and delivery vehicle routing/scheduling, time-space network, solution algorithm
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣目前已超過70家銀行的設立,銀行為了能提供民眾取款的便利性,而設置了大量的提款機供民眾取款,因此大大的增加運鈔作業之需求。銀行將運鈔作業委外交由保全公司負責,而保全公司提供銀行各分行現金護運至總行、各提款機現金之護運等服務,經常面臨被歹徒搶劫的風險,往往造成龐大的財物損失。從2000年至今運鈔車被歹徒搶劫之事件高達了30件之多,從許多被運鈔車被搶劫的案例中可發現,其中最主要的問題在目前的實務排程方式,乃由人工排程的方式規劃出幾條可選方案進行指派,但未能考慮到運鈔車護運作業行駛的路線與抵達時間所需的變化性,導致被歹徒輕易的跟蹤、觀察、進而被掌握行駛的動向。故張佑璿(2011)提出以時空相似度為限制之運鈔車護運作業排程模式,以幫助決策單位之決策者盡可能規劃出與先前護運路線不相似之護運路線。然而,在實際護運作業過程中,運鈔車面臨不單單是護運路線的重複性問題,也受在不同時空環境下之實際道路情況與服務需求點的風險因素影響,例如:紅綠燈數量、報案反應時間、運送距離等。因此本研究以層級分析法分析運鈔車護作業風險因素之相對重要性,依據決策分析法界定各風險因素估計值,並建立一風險成本評估方法,以反應出各護運路段與滯留作業的風險因素對護運作業安全上之影響。
    本研究參考張佑璿(2011)利用時空網路流動技巧建立運鈔車護運作業模式,以定式車輛在時空中的流動情況,並將護運作業風險評估之結果納入此模式中,以作為各護運路段之風險成本。此模式屬NP-hard 問題,並利用 C++ 程式語言配合數學規劃軟體 CPLEX 進行模式求解,但當面臨實務的大型問題時,將難以在有限時間內利用數學規劃軟體求得最佳解。緣此,本研究發展一啟發式演算法以有效地求解問題。最後為評估模式與演算法之實用績效,以國內一保全公司的營運資料以及合理假設產生測試範例,並與張佑璿(2011)設計之模式進行範例測試與結果比較,且針對本研究模式不同參數進行敏感度分析,結果顯示本模式更能考慮到實務上護運作業風險因素對安全性之影響,以提供保全公司作為參考。


    In Taiwan, the number of the banks is close to 70. To facilitate the public to draw money, they have set up a large number of ATM (Automatic Teller Machine), which increases the demand for cash conveyance. This also means that the risk of the robbery may increase. In general, the security carrier is mainly in charge of the cash conveyance from chest to bank or ATM, and these cash conveyance routes are formulated based on the personal experience of the decision maker. In the past decade, the number of robberies occurring in Taiwan is up to 30 cases. According to these records of robberies, it can be found that the main reason of the robbery is the invariant conveyance routes. Therefore, the bad guy can easily track the cash pick-up and delivery vehicle and rob the money on the vehicle. To remedy the invariant conveyance route, Chang (2011) has proposed a concept of similarity of time and space for routing and scheduling. Although its test results show that there is a significant difference in route similarity between the formulated cash conveyance routes and past ones, many road conditions that may influence the risk of the robbery are not considered in Chang’s study, including the number of traffic lights, the reaction time of reporting, the transportation distance and so on. To reflect those road conditions that may influence the risk of the robbery, in this study, we utilize the Analytical Hierarchy Process (AHP) to analyze the relative importance of risk factors in the cash conveyance route. Then, we calculate the estimation value for each risk factor using the Decision Analysis (DA) and construct an evaluation method of risk cost in order to quantify these risk factors.

    In this study, we employ the time-space network flow technique that has been used in Chang’s study to represent the potential movement of the cash pick-up and delivery vehicle and construct the cash pick-up and delivery vehicle routing/scheduling model incorporating the evaluation of risk factors in conveyance route. Mathematically, the model is formulated as an integer multiple-commodity network flow problem, which is characterized as NP-hard. To solve the problem, the C computer language, coupled with the CPLEX mathematics programming solver, are utilized. Because the problem size is expected to be huge, a solution algorithm based on a problem decomposition/collapsing technique is thus developed to efficiently solve the problem. To evaluate the performance of the model and the solution algorithm, the numerical tests are carried out using real operating data from a security carrier in Taiwan which is the same as those of Chang’s study. The test results show that the model and the solution algorithm would be useful for formulating the cash conveyance routes under the actual road conditions. In addition, compared with the test results of Chang’s study, it can be found that our model can formulate more variant cash conveyance route than Chang’s model through the consideration of the risk factors in conveyance route.

    摘要. I ABSTRACT II 致謝. IV 目錄. V 圖目錄 VIII 表目錄 IX 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的與範圍 2 1.3 研究方法與流程 2 第二章 現況概述與文獻回顧 5 2.1 國內保全業現況概述 5 2.2 運鈔車護運作業排程相關文獻 7 2.3 風險定義與評估方法之相關文獻 8 2.4 層級分析法之相關文獻 10 2.5 風險管理之相關文獻 11 2.6 時窗限制之車輛派遣問題之相關文獻 13 2.7 時空網路之相關文獻 15 2.8 大型含額外限制之整數網路流動問題啟發式演算法之相關文獻 17 2.9 文獻評析 20 第三章 研究方法 21 3.1 層級分析法 21 3.1.1 層級分析法之基本假設與評定方式 21 3.1.2 層級分析法之執行步驟 22 3.2運鈔車護運作業風險評估方式構建 24 3.2.1 運鈔車護運作業風險評估架構之建立 24 3.2.2 構面與準則定義 25 3.2.3 問卷設計 26 3.2.4 問卷發送與回收情況 27 3.2.5 權重分析 29 3.3 護運作業風險因素之評估方式 30 3.4 護運作業風險因素之量化方式 35 3.5 小結 36 第四章 模式建構 38 4.1 確定性運鈔車護運作業排程模式架構 38 4.1.1 運鈔車護運作業排程模式之基本假設 38 4.1.2 確定性模式之車流時空網路 40 4.1.3 運鈔車護運作業排程模式之符號說明 45 4.1.4 運鈔車護運作業排程模式之數學定式 45 4.2 模式測試 46 4.3 確定性運鈔車護運作業排程模式之模式應用 47 4.4 小結 48 第五章 求解演算法設計 49 5.1 啟發解演算法 49 5.2 小結 56 第六章 範例測試 57 6.1 資料分析 57 6.1.1 運鈔車護運作業排程規劃所需之相關參數資料 57 6.1.2 服務需求點資料 57 6.1.3 風險因素之權重值資料 58 6.1.4 風險因素之估計值資料 58 6.1.5 運鈔車護運作業之成本資料 59 6.2模式發展 60 6.2.1 問題規模 60 6.2.2 模式輸入資料 61 6.3 電腦演算環境及設定 62 6.3.1 電腦演算環境 62 6.3.2 相關參數設定 62 6.3.3 模式輸出資料 63 6.4 範例測試結果與分析 63 6.4.1 不同模式間之分析比較 67 6.5 敏感度分析 76 6.5.1 護運作業成本之敏感度分析 76 6.5.2 風險因素權重值之敏感度分析 82 6.6 方案分析 86 6.6.1 不同問題規模之方案分析 87 6.7 小結 88 第七章 結論與建議 89 7.1 結論 89 7.2 建議 90 7.3 貢獻 91 參考文獻 92 附錄. 101 附錄一 專家問卷 101 附錄二 CPLEX Callable Library Code 107 附錄三 服務需求點及其形態 108

    1. 王生德,「以巨集啟發式方法求解時窗限制回程取貨車輛路線問題(VRPBTW)之研究」,碩士論文,中華大學科技管理研究所 (2004)。
    2. 王振生,「專業保全人員證照制度建立之研究」,碩士論文,國立臺北大學犯罪研究所 (2010)。
    3. 王憶萍,「具時窗限制下宅配業多營業所多車代收點配送路線之研究」,碩士論文,國立東華大學企業管理學系 (2010)。
    4. 江文毅,「運鈔車護運路線決策支援系統建立之研究」,碩士論文,華梵大學工業管理學系 (2001)。
    5. 余秀梅,「多元商品模式應用在動態貨櫃調度問題之研究」,碩士論文,國立成功大學交通管理科學研究所 (1994)。
    6. 何俊德,「同時收送貨存貨途程配銷模式之研究---以混合免疫禁忌演算法求解」,碩士論文,龍華科技大學資訊管理系碩士班 (2010)。
    7. 辛孟鑫,「撥召運輸系統路線規劃問題之研究-以臺北市復康巴士為例」,碩士論文,國立成功大學交通管理科學研究所 (2005)。
    8. 邱明琦、陳春益、林佐鼎,「海運貨櫃排程模式之研究」,運輸計劃季刊,第三十一卷,第三期,第495-522頁 (2002)。
    9. 吳富榮,「保全業標準作業流程與風險管理研究」,碩士論文,國立臺北大學犯罪研究所 (2008)。
    10. 吳銘偉,「保全公司運鈔車護運作業排程規劃之研究」,碩士論文,國立中央大學土木工程系 (2010)。
    11. 吳權哲,「都會區計程車共乘配對模式暨求解演算法之研究」,碩士論文,國立中央大學土木工程系 (2007)。
    12. 李敏華,「海運承攬運送業貨損之風險管理研究-以出口作業為例」,碩士論文,國立高雄海洋科技大學航運管理研究所 (2011)。
    13. 李慧菁,「資訊科技產業產品研發專案關鍵成功因素之研究-AHP方法之應用」,碩士論文,大同大學事業經營研究所 (2007)。
    14. 林士鈞,「定期貨櫃運輸船舶排程暨船期表建立之研究」,碩士論文,國立中央大學土木工程系 (2006)。
    15. 林豐福、賴靜惠,道路潛在危險性評估指標之研究,交通部運輸研究所 (1997)。
    16. 郭玲伶,「電子載貨證卷在海運上影用之風險管理」,碩士論文,國立台灣海洋大學航運管理學系 (2004)。
    17. 陳家緯,「城際大眾運輸安全風險評估之研究」,碩士論文,國立交通大學運輸工程與管理學系 (2000)。
    18. 陳婷婷,「應用層級分析法於貨櫃排艙之研究」,碩士論文,國立臺灣海洋大學運輸科學系 (2011)。
    19. 張佑璿,「隨機旅行時間下保全公司運鈔車護運作業排程規劃之研究」,碩士論文,國立中央大學土木工程系 (2011)。
    20. 張新立,「捷運系統與都會區運輸網路之配合研究」,碩士論文,國立交通大學交通運輸工程研究所 (1979)。
    21. 禇志鵬,「層級分析法AHP」,研究論文,國立東華大學企業管理學系(2003)。
    22. 黃梅君,「影響定期航商純損風險管理因素之研究」,碩士論文,國立成功大學交通管理科學研究所 (2002)。
    23. 黃意文,「應用分析層級程式法(AHP)建立產品設計評價模式之研究-以行動電話為例」,碩士論文,國立臺灣科技大學設計研究所 (2007)。
    24. 黃繼賢,「道路風險因子評估對肇事影響之研究」,碩士論文,逢甲大學運輸科技與管理學系 (2011)。
    25. 董又榮,「市場競爭下城際客運排程規劃模式暨求解演算法之研究」,碩士論文,國立中央大學土木工程系 (2005)。
    26. 葉瑋婷,「市區道路安全路線選擇之研究」,碩士論文,國立臺灣大學土木工程學系 (2007)。
    27. 鄧振源、曾國雄,「層級分析法(AHP)的內涵特性與應用(下)」,中國統計學報,第七卷,第二十七期,第13767-13870頁 (1989)。
    28. 賴湛培,「考慮原料補貨之預拌混凝土車輛聯合派遣問題研究」,碩士論文,中華大學運輸科技與物流管理學系 (2010)。
    29. 顏上堯、齊志仁、湯慶輝,「隨機需求下多目標長途客運排程模式之研究」,運輸計劃季刊,第三十四卷,第一期,第 93-117 頁 (2005)。
    30. 顏上堯、蔣偉寧、陳佳宏、陳宇軒、賴俊宏,「橋梁重要程度等級之建立」,土木水利,第三十一卷,第五期,第54-61頁 (2004)。
    31. 蘇建誌,「臺灣地區貨車安全風險分析之研究」,碩士論文,國立高雄第一科技大學運輸與倉儲營運研究所 (2002)。
    32. 蘇意婷,「國籍航空公司貨機飛航排程暨班表建立之研究」,碩士論文,長榮大學航運管理研究所 (2006)。
    33. 嚴順利,「運用風險值的概念於BOT專案評估與風險分析 —以高雄港第六貨櫃中心為例」,碩士論文,國立中山大學財務管理學系 (2002)。
    34. Abkowitz, M. and Cheng, P. D., “Developing a risk /cost framework for routing truck movements of hazardous materials, ” Accid Anal & Prev, Vol. 20, No. 1, pp. 39-51 (1988).
    35. Agin, N. and Cullen, D., “An Algorithm for Transportation Routing and Vehicle Loading”, in Geisler, M. (Ed.), Logistics, pp.1-20, North Holland, Amsterdam (1975).
    36. Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W. P. and Vance, P. H., “Branch-and-price: column generation for solving huge integer programs,” Operations Research, Vol 46, pp. 316-329 (1998).
    37. Benders, J. F., “Partitioning procedures for solving mixed-variables programming problems,” Numerische Mathematik, Vol. 4, pp. 238-252 (1962).
    38. Bent, R. W. and Hentenryck, P. V., “Scenario-based planning for partially dynamic vehicle routing with stochastic customers,” Operations Research, Vol. 52, pp.977-987 (2003).
    39. Bubbico, R., Maschio, G., Mazzarotta, B., Milazzo, M. F., Parisi, E., “Risk management of road and rail transport of hazardous materials in Sicily,” Loss Prevention in the Process Industries, Vol. 19, pp. 32-38 (2006).
    40. Carbone, T. A. and Tippett, D. D., “Project risk management using the project risk FMEA,” Engineering Management Journal, Vol. 16, No. 4, pp. 25-35 (2004).
    41. Chih, K. C. K., “A real time dynamic optimal freight car management simulation model of multiple railroad, mulitcommodity temporal spatial flow problem,” Ph.D. Dissertation, Princeton University, Princeton, NJ (1986).
    42. Chen, C. Y. and Kornhauser, A. L., “Decomposition of convex mulitcommodity network flow problem,” Report SOR-90-19, Department of Civil Engineering and Operations Research, Princeton University, Princeton, NJ (1990).
    43. Desaulniers, G., Desrosiers, J., Dumas, Y., Solomon, M. M. and Soumis, F., “Daily aircraft routing and scheduling,” Management Science, Vol. 43, pp. 841-855 (1997).
    44. Diana, M. and Dessouky, M. M., “A new regret insertion heuristic for solving large-scale dial-a-ride problems with time windows,” Transportation Research Part B, Vol.38, pp.539–557 (2004).
    45. Diana, M., Dessouky, M. M., and Xia, N., “A model for the fleet sizing of demand responsive transportation services with time windows,” Transportation Research Part B, Vol. 40, Issue 8, pp. 651-666 (2006).
    46. Fisher, M. L., “The Lagrangian relaxation method for solving integer programming problem,” Management Science, Vol. 27, pp. 1-18 (1981).
    47. Garey, M. R. and Johnson, D. S. “Computers and intractability: a guide to the theory of NP-completeness,” San Francisco, CA: Freeman (1979).
    48. Gumus, A. T., “Evaluation of hazardous waste transportation firms by using a two step fuzzy-AHP and TOPSIS methodology,” Expert Systems with Applications, Vol. 36, pp. 4067-4074 (2009).
    49. Head, G. L. and Horn, S II., Essentials of The Risk Management Process, Malvern Pa. :Insurance Institute of America (1988).
    50. Horn, M. E. T., “Fleet scheduling and dispatching for demand-responsive passenger services,” Transportation Research Part C, Vol. 10, pp. 35-63(2002).
    51. Hsu, C. I., Hung, S. F., Li, H. C., “Vehicle routing problem with time-windows for perishable food delivery,” Food Engineering, Vol. 80, pp. 465-475 (2007).
    52. Ibaraki, T., Kubo, M., Masuda, T., Uno, T. and Yagiura, M., “Effective Local Search Algorithms for the Vehicle Routing Problem with General Time Windows,” working paper, Department of Applied Mathematics and Physics, Kyoto University, Japan (2001).
    53. Keeney, R. L., and Raiffa, H., Decision with Multiple Objective: Preferences and Value Tradeoffs, John Wiley and Sons, New York(1976).
    54. Kennington, J. L. and Shalby, M., “An effective subgradient procedure for minimum cost multicommodity flow problem,” Management Science, Vol. 23, pp. 994-1004 (1977).
    55. Kliewer, N., Mellouli, T., Suhl, L., “A time–space network based exact optimization model for multi-depot bus scheduling,” Operation Research, Vol. 175, pp. 1616-1627 (2006).
    56. Kulak, O., Kahraman, C., ” Fuzzy multi-attribute selection among transportation companies using axiomatic design and analytic hierarchy process,” Information Sciences, Vol. 170, pp. 191-210 (2005)。
    57. Lee, B. C., “Routing problem with service choices, flight transportation laboratory,” Report R86-4, Massachusetts Institute of Technology, MA (1986).
    58. Lee, W. K., “Risk assessment modeling in aviation safety management,” Air Transport Management, Vol. 12, pp. 267-273 (2006).
    59. Levin, A., “Some fleet routing and scheduling problems for air transportation systems,” Flight Transportation Laboratory Report R68-5, Massachusetts Institute of Technology, MA (1969).
    60. Levin, A., “Scheduling and fleet routing models for transportation systems,” Transportation Science, Vol. 5, pp. 232-255 (1971).
    61. List, G. F., Mirchandani, P. B., Turnquist, M. A., Zografos, K. G., “Modeling and analysis for hazardous materials transportation: risk analysis, routing/scheduling and facility location,” Transportation Science, Vol. 25, No. 2, pp. 100-114 (1991).
    62. List, G. F., Wood, B., Nozick, L. K., Turnquist, M. A., Jones, D. A., Kjeldgaard, E. A., and Lawton, C. R., “Robust optimization for fleet planning under uncertainty,” Transportation Research Part E, Vol. 39, pp. 209-227 (2003).
    63. Lu, H. A., Chen, C. Y., “A timespace network model for unit load device stock planning in international airline services,” Air Transport Management, Vol. 17, pp. 94-100 (2011).
    64. Mulvery, J. M. and Ruszczynski, A., “A new scenario decomposition method for large-scale stochastic optimization,” Operations Research, Vol. 43, pp. 477-490 (1995).
    65. Mulvery, J. M., Vanderbei, R. J., Zenios, S. A., “Robust optimization of large-scale systems,” Operations Research, Vol. 43, pp. 254-281 (1995).
    66. Powell, W. B. and Ioannis, A. K., “Shipment routing algorithms with tree constraints,” Transportation Science, Vol. 26, pp. 230-245 (1992).
    67. Raemdonck, K. V., Macharis, C., Mairesse, O., “Risk analysis system for the transport of hazardous materials,” Safety Research, Vol. 45, pp. 55-63 (2013).
    68. Reniers, G. L. L., Jongh, K. D., Gorrens, B., Lauwers, D., Leest, M. V., Witlox, F., “Transportation Risk ANalysis tool for hazardous Substances (TRANS) – A user-friendly, semi-quantitative multi-mode hazmat transport route safety risk estimation methodology for Flanders,” Transportation Research Part D, Vol. 15, pp. 489-496 (2010).
    69. Rosenbloom, J. S., A case study in Risk Management, Prentice Hall (1972).
    70. Saaty, T. L., Decision Making for leaders-the analytic hierarchy process for decisions in a complex world, Pittsburgh, PA: RWS Publications (1990).
    71. Simpson, R. W., “A Review of Scheduling and Routing Model for Airline Scheduling,” IX AGIFORS Symposium, Broadway, England (1969).
    72. Simonoff, J. S., Restrepo, C. E., Zimmerman, R., “Risk management of cost consequences in natural gas transmission and distribution infrastructures,” Loss Prevention in the Process Industries, Vol. 23, pp. 269-279 (2010).
    73. Shan, Y.S., “A dynamic mulitcommodity network flow model for real time optimal real freight car management,” Ph.D. Dissertation, Princeton University, Princeton, NJ (1985).
    74. Tan, K. C., Lee, L. H., Zhu, Q. L., Ou, K., “Heuristic methods for vehicle routing problem with time windows,” Artificial Intelligence in Engineering, Vol. 15, pp. 281-295 (2001).
    75. Teodorovic, D. and Guberinic, S., “Optimal dispatching strategy on an airline network after a schedule perturbation,” European Journal of Operational Research, Vol. 15, pp. 178-182 (1984).
    76. Teodorovic, D., Airline Operations Research, Gordon and Breach Science Publishers, New York (1988).
    77. Thengvall, B. G., Yu, G., and Bard, J. F., “Multiple fleet aircraft schedule recovery following hub closure,” Transportation Research Part A, Vol. 35, pp. 289-308 (2001).
    78. Willett, A. H., The Economic Theory of Risk and Insurance, Homewood, Irwin (1951).
    79. Williams, C. A. and Heins, R. M., Risk Management and Insurance, 4th ed., NY:Mcgraw -Hill (1981).
    80. Yan, S. and Chen, C. H., “Coordinated flight scheduling models for allied airlines,” Transportation Research Part C, Vol. 15, pp. 246-264 (2007).
    81. Yan, S. and Lai, W. S., “An optimal scheduling model for ready mixed concrete supply with overtime considerations,” Automation in Construction, Vol. 16, pp. 734-744 (2007).
    82. Yan, S. and Lin, C., “Airline scheduling for the temporary closure of airports,” Transportation Science, Vol.31, pp. 72-82 (1997).
    83. Yan, S. and Tu, Y., “Multi-fleet routing and multi-stop flight scheduling for schedule perturbation,” European Journal of Operational Research, Vol. 103, pp. 155-169 (1997).
    84. Yan, S. and Yang, D. H., “A decision support framework for handling schedule perturbation”, Transportation Research Part B, Vol. 30, pp. 405-419 (1996).
    85. Yan, S. and Young, H. F., “A Decision Support Framework for Multi-Fleet Routing and Multi-Stop Flight Scheduling,” Transportation Research Part A, Vol. 30, pp. 379-398 (1996).
    86. Yan, S. and Chen, H. L., “A Scheduling Model and a Solution Algorithm for Inter-city Bus Carriers,” Transportation Research Part A, Vol. 36, pp. 805-825 (2002).
    87. Yan, S., Chen, C. H., and Chen, C. K., “Long-term manpower supply planning for air cargo terminals,” Journal of Transport Management, Vol. 12, Issue 4, pp. 175-181 (2006).
    88. Yan, S. and Tseng, C. H., “A passenger demand based model for airline flight scheduling and fleet routing,” Computers & Operations Research, Vol. 29, pp. 1559-1581 (2002).
    89. Yan, S., Chi, C. J., and Tang, C. H., “Inter-city bus routing and timetable setting under stochastic demands,” Transportation Research Part A, Vol. 40, pp. 572-586 (2006).
    90. Yan, S. and Shih, Y. L., “A time-space network model for work team scheduling after a major disaster”, Journal of the Chinese Institute of Engineers, Vol. 30, pp. 63-75 (2007).
    91. Yan, S. and Tang, C. H., “A heuristic approach for Airport Gate Assignments for Stochastic Flight Delays,” European Journal of Operational Research, Vol. 180, Iss. 2, pp. 547-567 (2007).
    92. Yan, S., Shieh, C. W., and Chen, M., “A simulation framework for evaluating airport gate assignments., ”Transportation Research Part A, Vol. 36, pp. 885-898(2002).
    93. Yan, S., Tang, C. H., and Fu, T. C., “An airline scheduling model and solution algorithms under stochastic demands,” European Journal of Operational Research, Vol. 190, pp. 22-39 (2008a).
    94. Yan, S., Lai, W., Chen, M., “Production scheduling and truck dispatching of ready mixed concrete,” Transportation Research Part E, Vol. 44, Issue 1, pp. 164-179 (2008b).
    95. Yannis, G., Golias, J., Papadimitriou, E., “Accident risk of foreign drivers in various road environments,” Safety Research, Vol. 38, pp. 471-480 (2007).

    QR CODE
    :::