| 研究生: |
蔡承祐 Cheng-Yu Tsai |
|---|---|
| 論文名稱: |
於ROS架構下應用SLAM之導航機器人開發 Navigation Robot Development by Applying SLAM Based on ROS |
| 指導教授: |
羅吉昌
Ji-Chang Lo |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 機器人作業系統 、同步定位與建圖 、路徑規劃 、光學雷達 |
| 外文關鍵詞: | Robot Operating System (ROS), Simultaneous Localization and Mapping (SLAM), Path Planning, LiDAR |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文基於機器人作業系統(Robot Operating System, ROS)開發室內導航機器人,機器人以樹莓派為運行機器人作業系統的核心,利用2D光學雷達(LiDAR)作為機器人的感測器,掃描並獲得周遭環境的平面資訊,以此進行同步定位與建圖(Simultaneous Localization and Mapping, SLAM)演算法並獲得即時位姿與建構平面地圖。接著透過在地圖上給予目標點資訊,機器人進行最佳路徑規劃。最後,樹莓派以ROSSerial與Arduino進行通訊,將規劃好的路徑轉換成速度與角速度數據輸出至Arduino後,Arduino以脈衝寬度調變(Pulse Width Modulation, PWM)訊號控制馬達轉速,進行機器人的移動控制,以此實現室內機器人的導航開發。
This thesis develops a indoor navigation robot based on Robot Operating System (ROS). The robot uses RaspberryPi to operate ROS, and applies 2D LiDAR as the sensor of the robot to scan and acquire the 2D information of surroundings, then uses the infromation above for conducting Simultaneous Localization and Mapping (SLAM) algorithm in order to obtain instant pose of the robot and build 2D map. After that, the robot applies optimal path planning by giving the information of specific point targets on the map. Finally, Raspberry Pi connects with Arduino by ROSSerial, transfers the planned path to velocity and angular velocity data then exports to Arduino, and Arduino controls the motor speed with Pulse Width Modulation (PWM) to operate the movement control of the robot by following the planned path, thus achieve the goal of indoor navigation robot development.
1.R. Maddison and C.Ni Mhurchu "Global positioning system: a new opportunity in physical activity measurement" Int J Behav Nutr Phys Act 6 (2009)
2.D. Nister, O. Naroditsky and J. Bergen "Visual odometry" Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2004)
3.S. Mohamed, M.-H. Haghbayan, T. Westerlund, J. Heikkonen, H. Tenhunen and J. Plosila "A Survey on Odometry for Autonomous Navigation Systems" in IEEE Access, Vol. 7, pp. 97466-97486 (2019)
4.R. Negenborn "Robot localization and kalman filters" Utrecht Univ., Utrecht, Netherlands, Master's thesis INF/SCR-0309 (2003)
5.M. Korkmaz, N. Yılmaz and A. Durdu "Comparison of the SLAM algorithms: Hangar experiments" MATEC Web of Conferences, Vol. 42 (2016)
6.F. Dellaert, D. Fox, W. Burgard and S. Thrun "Monte Carlo localization for mobile robots" Proceedings 1999 IEEE International Conference on Robotics and Automation, Vol.2, pp. 1322-1328 (1999)
7.K. Murphy and S. Russell "Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks" Sequential Monte Carlo Methods in Practice. Springer, New York, NY (2001)
8.D. Fox "Adapting the Sample Size in Particle Filters Through KLD-Sampling" The International Journal of Robotics Research, Vol. 22, pp.985-1003 (2003)
9.J. Leonard and H. Durrant-Whyte "Simultaneous map building and localization for an autonomous mobile robot" IROS, Vol. 3 (1991)
10.A. Davison, I. Reid, N. Molton, O. Stasse “MonoSLAM:Real-time single camera SLAM” Transactions on Pattern Analysis and Machine Intelligence (TPAMI), Vol. 29, No.6, pp. 1052-1067 (2007)
11.G. Klein, D. Murray “Parallel tracking and mapping for small AR workspaces” In International Symposium on Mixed and Augmented Reality (ISMAR), pp.225-234 (2007)
12.R. Mur-Artal, J. Montiel, J. Tardos “ORB-SLAM: a versatile and accurate monocular SLAM system” Transactions on Robotics, Vol.31, pp.1147–1163 (2015)
13.G. Grisetti, C. Stachniss,W. Burgard “Improved Techniques for Grid Mapping with Rao-Blackwellized Particle Filters” IEEE Transactions on Robotics, Vol.23, pp.34-46 (2007)
14.M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit “FastSLAM: A Factored Solution to the Simultaneous Localization and Mapping Problem” Proceedings of the AAAI National Conference on Artificial Intelligence, pp.593-598 (2002)
15.S. Kohlbrecher, O. von Stryk, J. Meyer and U. Klingauf "A flexible and scalable SLAM system with full 3D motion estimation" IEEE International Symposium on Safety, Security, and Rescue Robotics, pp.155-160 (2011)
16.W. Hess, D. Kohler, H. Rapp and D. Andor "Real-time loop closure in 2D LIDAR SLAM" In:2016 IEEE International Conference on Robotics and Automation (ICRA). Stockholm, pp.1271-1278 (2016)
17.D. Wahyuningsih and E. Syahreza "Shortest Path Search Futsal Field Location With Dijkstra Algorithm" IJCCS (Indonesian Journal of Computing and Cybernetics Systems) 12.2, pp. 161-170 (2018)
18.A. Goyal, P. Mogha, R. Luthra and N. Sangwan "Path finding: A* or dijkstra’s?" International Journal in IT and Engineering 2.1, pp. 1-15 (2014)
19.D. Rachmawati and L. Gustin "Analysis of Dijkstra’s algorithm and A* Algorithm in shortest path problem" Journal of Physics: Conference Series, Vol.1566, No. 1 (2020)
20.D. Fox, W. Burgard and S. Thrun "The dynamic window approach to collision avoidance" IEEE Robotics \& Automation Magazine, Vol.4, No.1, pp. 23-33 (1997)
21.光達三角測距示意圖 https://www.slamtec.com/en/News/Detail/190
22.光達三角測距示意圖 https://reurl.cc/kEVorn
23.ROS訊息傳遞架構圖 https://ithelp.ithome.com.tw/articles/10216423
24.SLAM流程圖 https://zhuanlan.zhihu.com/p/37161498
25.掃描匹配示意圖 J. Konecny, P. Kromer, M. Prauzek and P. Musilek "Scan matching by cross-correlation and differential evolution" Electronics 8.8: 856 (2019)
26.Dijkstra演算法與A*演算法比較圖 http://theory.stanford.edu/amitp/GameProgramming/AStarComparison.html
27.DWA運行示意圖 http://wiki.ros.org/dwa\_local\_planner
28.機器人座標系關係圖 http://wiki.ros.org/hector\_slam/Tutorials/SettingUpForYourRobot
29.navigation架構圖 https://wiki.ros.org/navigation/Tutorials/RobotSetup
30.代價地圖分層圖 D. Lu, D. Hershberger and W. Smart "Layered costmaps for context-sensitive navigation" IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE (2014)
31.UART傳輸示意圖 https://www.analog.com/cn/design-center/landing-pages/002/tech-articles-taiwan/uart-a-hardware-communication-protocol.html