跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳政坤
WU, ZHENG-KUN
論文名稱: 拋光方法對塑膠微流控裝置之表面優化和結構的影響
Optimization of surface polishing method and its structure effects for polymer microfluidic device
指導教授: 曹嘉文
Chia-Wen Tsao
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 70
中文關鍵詞: 微銑削微結構拋光表面粗糙度優化微流體
外文關鍵詞: Micro milling, Microstructure polishing, Surface roughness optimization, Microfluidics
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以PMMA/COC/CBC為微流體基板,利用微銑削加工製程進行微流體製造,由於微切削後會有殘留紋路的產生,但較少的學者討論殘留紋路的後處理方式及後處理對微結構的影響。因此本論文針對拋光製程及拋光後對模具複製時的影響做相關探討。
    實驗設計分為三階段進行,第一階段觀察微銑削加工與材料對表面粗糙度的影響,以工件表面粗糙度為評估因子,找出最適當之切削參數與材料,實驗結果顯示PMMA的切削性最佳,在加工參數(Ø 0.2 mm, 1 mm/s, 30,000 rpm)時,表面粗糙度為Ra=0.380 μm;第二階段則是利用羊毛輪與材料表面間擠壓的位移變形量(預壓量)與丙酮熔融材料之時間,來觀察拋光對表面粗糙度及微結構的影響,在工件表面粗糙度及微結構失真率中尋找最適當之拋光參數平衡點,本實驗結果顯示機械研磨拋光在預壓量0.3 mm時,表面粗糙度為Ra=0.162 μm,微結構失真率約為14%,而化學熔融拋光則是在拋光時間4 min時,表面粗糙度為Ra=0.180 μm,微結構失真率約為30%;第三階段為複製方式對微流體裝置的影響,對比複製後模具結構在表面粗糙度與微結構的影響。本實驗結果顯示熱塑性微流體裝置與PDMS微流體裝置相比,雖然會因為熱壓導致微結構些微變形,但其裝置結合強度較高壓力適用範圍更廣。而PDMS微流體裝置則能在結合時,消除加工造成的表面紋路獲得更好的表面粗糙度,且PDMS為彈性體能做到一定程度的彎折。


    In this paper, PMMA/COC/CBC is used as the microfluidic substrate, and the micro-milling process is used for microfluidic manufacturing. Because there will be residual lines after micro-cutting, fewer scholars discuss the post-processing methods and post-processing effects of residual lines. The influence of microstructure. Therefore, this paper discusses the polishing process and the impact of polishing on mold replication.
    The experimental design is divided into three stages. The first stage observes the effect of micro-milling processing and materials on the surface roughness, and uses the surface roughness of the test piece as an evaluation factor to find the most appropriate cutting parameters and materials. The experimental results show that PMMA has the best machinability, and the surface roughness is Ra=0.380 μm when the machining parameters are (Ø 0.2 mm, 1 mm/s, 30,000 rpm). The second stage is to use the displacement and deformation (preload) of the extrusion between the wool wheel and the material surface and the time for the acetone to melt the material to observe the effect of polishing on the surface roughness and microstructure. Find the most appropriate polishing parameter balance point in the structural distortion rate. The results of this experiment show that when the preload is 0.3 mm, the surface roughness of mechanical grinding and polishing is Ra=0.162 μm, and the microstructure distortion rate is about 14%, while the chemical melting polishing is when the polishing time is 4 min, the surface roughness is Ra=0.180 μm, the microstructure distortion rate is about 30%. The third stage is the impact of the replication method on the microfluidic device, comparing the impact of the mold structure on the surface roughness and microstructure after replication. The results of this experiment show that compared with the PDMS microfluidic device, the thermoplastic microfluidic device may cause a slight deformation of the microstructure due to thermal pressure, but the device has a higher bonding strength and a wider range of pressure applications. The PDMS microfluidic device can eliminate surface textures caused by processing to obtain better surface roughness when combined, and PDMS is an elastomer that can bend to a certain extent. 

    摘要 I Abstract II 誌謝 IV 目錄 V 圖目錄 VII 表目錄 X 第一章 前言 1 1-1 微流體系統及基板演進 1 1-2 微流體系統之材料選擇 2 1-3 微流體系統之製程選擇 4 1-4塑膠微結構之表面拋光 8 1-5 研究動機 14 第二章 實驗材料設備與方法 15 2-1 實驗材料及設備軟體 15 2-2 實驗方法 16 2-2-1 微銑削加工製程 17 2-2-2 拋光製程 17 2-2-3 拋光微結構分析 20 2-2-4 微流體裝置複製與製造 21 2-3 量測方法 24 2-3-1 表面粗糙度量測 24 2-3-2 顯微影像觀察與計算 24 第三章 結果與討論 26 3-1 微銑削加工與材料對表面粗糙度的影響 26 3-2 拋光對表面粗糙度的影響 29 3-2-1 機械研磨拋光 30 3-2-2 化學熔融拋光 32 3-3 拋光對微結構變形的影響 33 3-3-1 機械研磨之微結構變形 34 3-3-2 化學熔融之微結構變形 37 3-4 複製方式對微流體裝置的影響 40 第四章 結論 48 參考文獻 51 附錄 54

    [1] P. Yager et al., "Microfluidic diagnostic technologies for global public health," Nature, vol. 442, no. 7101, pp. 412-418, Jul 27 2006.
    [2] G. M. Whitesides, "The origins and the future of microfluidics," Nature, vol. 442, no. 7101, pp. 368-373, Jul 27 2006.
    [3] A. Bhattacharyya and C. M. Klapperich, "Thermoplastic microfluidic device for on-chip purification of nucleic acids for disposable diagnostics," Analytical Chemistry, vol. 78, no. 3, pp. 788-792, Feb 1 2006.
    [4] G. S. Fiorini and D. T. Chiu, "Disposable microfluidic devices: fabrication, function, and application," Biotechniques, vol. 38, no. 3, pp. 429-446, Mar 2005.
    [5] H. Becker and L. E. Locascio, "Polymer microfluidic devices," Talanta, vol. 56, no. 2, pp. 267-287, Feb 11 2002.
    [6] C. W. Tsao, "Polymer Microfluidics: Simple, Low-Cost Fabrication Process Bridging Academic Lab Research to Commercialized Production," Micromachines, vol. 7, no. 12, Dec 2016.
    [7] K. Yamada, T. G. Henares, K. Suzuki, and D. Citterio, "Paper-Based Inkjet-Printed Microfluidic Analytical Devices," Angewandte Chemie-International Edition, vol. 54, no. 18, pp. 5294-5310, Apr 27 2015.
    [8] P. M. van Midwoud, A. Janse, M. T. Merema, G. M. M. Groothuis, and E. Verpoorte, "Comparison of Biocompatibility and Adsorption Properties of Different Plastics for Advanced Microfluidic Cell and Tissue Culture Models," Analytical Chemistry, vol. 84, no. 9, pp. 3938-3944, May 1 2012.
    [9] X. Yi, R. Kodzius, X. Q. Gong, K. Xiao, and W. J. Wen, "A simple method of fabricating mask-free microfluidic devices for biological analysis," Biomicrofluidics, vol. 4, no. 3, Sep 2010.
    [10] A. K. Yetisen, M. S. Akram, and C. R. Lowe, "Paper-based microfluidic point-of-care diagnostic devices," Lab On a Chip, vol. 13, no. 12, pp. 2210-2251, 2013.
    [11] K. N. Ren, J. H. Zhou, and H. K. Wu, "Materials for Microfluidic Chip Fabrication," Accounts Of Chemical Research, vol. 46, no. 11, pp. 2396-2406, Nov 19 2013.
    [12] W. Gao, M. F. Liu, S. F. Chen, C. B. Zhang, and Y. J. Zhao, "Droplet microfluidics with gravity-driven overflow system," Chemical Engineering Journal, vol. 362, pp. 169-175, Apr 15 2019.
    [13] D. Huh, B. D. Matthews, A. Mammoto, M. Montoya-Zavala, H. Y. Hsin, and D. E. Ingber, "Reconstituting Organ-Level Lung Functions on a Chip," Science, vol. 328, no. 5986, pp. 1662-1668, Jun 25 2010.
    [14] K. Liu and Z. H. Fan, "Thermoplastic microfluidic devices and their applications in protein and DNA analysis," Analyst, vol. 136, no. 7, pp. 1288-1297, 2011.
    [15] M. Nevitt, Selecting and designing with the right thermoplastic polymer for your microfluidic chip: a close look into cyclo-olefin polymer (SPIE MOEMS-MEMS). SPIE, 2013.
    [16] S. Halldorsson, E. Lucumi, R. Gomez-Sjoberg, and R. M. T. Fleming, "Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices," Biosensors & Bioelectronics, vol. 63, pp. 218-231, Jan 15 2015.
    [17] D. J. Guckenberger, T. E. de Groot, A. M. D. Wan, D. J. Beebe, and E. W. K. Young, "Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices," Lab On a Chip, vol. 15, no. 11, pp. 2364-2378, 2015.
    [18] P. C. Chen, C. W. Pan, W. C. Lee, and K. M. Li, "An experimental study of micromilling parameters to manufacture microchannels on a PMMA substrate," International Journal Of Advanced Manufacturing Technology, vol. 71, no. 9-12, pp. 1623-1630, Apr 2014.
    [19] P. C. Chen, R. H. Zhang, Y. Aue-u-Lan, and G. E. Chang, "Micromachining Microchannels on Cyclic Olefin Copolymer (COC) Substrates with the Taguchi Method," Micromachines, vol. 8, no. 9, Sep 2017.
    [20] D. Konstantinou, A. Shirazi, A. Sadri, and E. W. K. Young, "Combined hot embossing and milling for medium volume production of thermoplastic microfluidic devices," Sensors And Actuators B-Chemical, vol. 234, pp. 209-221, Oct 29 2016.
    [21] J. J. Sun et al., "Power-free polydimethylsiloxane femtoliter-sized arrays for bead-based digital immunoassays," Biosensors & Bioelectronics, vol. 139, Aug 15 2019.
    [22] J. Steigert et al., "Rapid prototyping of microfluidic chips in COC," Journal Of Micromechanics And Microengineering, vol. 17, no. 2, pp. 333-341, Feb 2007.
    [23] F. Cogun, E. Yildirim, and M. A. S. Arikan, "Investigation on replication of microfluidic channels by hot embossing," Materials And Manufacturing Processes, vol. 32, no. 16, pp. 1838-1844, 2017.
    [24] H. Y. Zhang, F. Z. Fang, M. D. Gilchrist, and N. Zhang, "Precision replication of micro features using micro injection moulding: Process simulation and validation," Materials & Design, vol. 177, Sep 5 2019.
    [25] Y. L. Wang, J. Balowski, C. Phillips, R. Phillips, C. E. Sims, and N. L. Allbritton, "Benchtop micromolding of polystyrene by soft lithography," Lab On a Chip, vol. 11, no. 18, pp. 3089-3097, 2011.
    [26] A. Alrifaiy, O. A. Lindahl, and K. Ramser, "Polymer-Based Microfluidic Devices for Pharmacy, Biology and Tissue Engineering," Polymers, vol. 4, no. 3, pp. 1349-1398, Sep 2012.
    [27] Ranajit Ghosh, Jeffrey A. Knopf, Daniel J. Gibson, and T. Mebrahtu, "Cryogenic Machining of Polymeric Biomaterials: An Intraocular Lens Case Study " Medical Device Materials IV: Proceedings of the Materials and Processes for Medical Devices Conference 2007, pp. 54-64, 2007.
    [28] X. Pessoles and C. Tournier, "Automatic polishing process of plastic injection molds on a 5-axis milling center," Journal Of Materials Processing Technology, vol. 209, no. 7, pp. 3665-3673, Apr 1 2009.
    [29] M. Moumen, J. Chaves-Jacob, M. Bouaziz, and J. M. Linares, "Optimization of pre-polishing parameters on a 5-axis milling machine," International Journal Of Advanced Manufacturing Technology, vol. 85, no. 1-4, pp. 443-454, Jul 2016.
    [30] X. J. Wu and X. Tong, "Study of trajectory and experiment on steel polishing with elastic polishing wheel device," International Journal Of Advanced Manufacturing Technology, vol. 97, no. 1-4, pp. 199-208, Jul 2018.
    [31] H. Ramasawmy and L. Blunt, "3D surface topography assessment of the effect of different electrolytes during electrochemical polishing of EDM surfaces," International Journal Of Machine Tools & Manufacture, vol. 42, no. 5, pp. 567-574, Apr 2002.
    [32] B. C. Zhang et al., "Study of selective laser melting (SLM) Inconel 718 part surface improvement by electrochemical polishing," Materials & Design, vol. 116, pp. 531-537, Feb 15 2017.
    [33] D. Dorranian, Abedini, Z., Hojabri, A., Ghoranneviss, M., Azad, I., & Branch, U., " STRUCTURAL AND OPTICAL CHARACTERIZATION OF PMMA SURFACE TREATED IN LOW POWER NITROGEN AND OXYGEN RF PLASMAS.," Materials Science, vol. 1, no. 3, pp. 217-229, 2009.
    [34] I. R. G. Ogilvie, V. J. Sieben, C. F. A. Floquet, R. Zmijan, M. C. Mowlem, and H. Morgan, "Reduction of surface roughness for optical quality microfluidic devices in PMMA and COC," Journal Of Micromechanics And Microengineering, vol. 20, no. 6, Jun 2010.
    [35] C. Matellan and A. E. D. Hernandez, "Cost-effective rapid prototyping and assembly of poly(methyl methacrylate) microfluidic devices," Scientific Reports, vol. 8, May 3 2018.
    [36] M. Serhatlioglu, B. Ortac, C. Elbuken, N. Biyikli, and M. E. Solmaz, "CO2 laser polishing of microfluidic channels fabricated by femtosecond laser assisted carving," Journal Of Micromechanics And Microengineering, vol. 26, no. 11, Nov 2016.
    [37] Z. Feng et al., "The stability of aluminum oxynitride (AlON) powder in aqueous system and feasible gel-casting for highly-transparent ceramic," Ceramics International, vol. 45, no. 17, pp. 23022-23028, Dec 1 2019.
    [38] "Polywatch Composition," https://www.beco-technic.be/media/pdf/sdb_281_en.pdf, 2015.

    QR CODE
    :::