| 研究生: |
卓文瑜 Wen-Yu Cho |
|---|---|
| 論文名稱: |
以脈衝直流反應性濺鍍製備氧化鋁薄膜於氮化鋁鎵/氮化鎵高電子遷移率電晶體之界面性質探討 Interface electrical properties of aluminum oxide thin films on AlGaN/GaN HEMTs prepared by Pulsed DC reactive sputtering |
| 指導教授: |
陳一塵
I-Chen Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學與工程研究所 Graduate Institute of Materials Science & Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 反應性濺鍍 、氧化鋁薄膜 、介電常數 、高電子遷移率電晶體 |
| 外文關鍵詞: | Reactive sputtering, Alumina film, Dielectric constant, High electron mobility transistors |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
具有優異物理特性的氮化鋁鎵/氮化鎵(AlGaN/GaN)高電子遷移率電晶體(HEMTs)被視為是下世代主要的高功率元件之一。由於金屬-半導體接觸形成之蕭特基(Schottky)閘極結構易導致漏電流過大,使得有效的閘極電壓範圍受到了限制。因此在閘極電極下方沉積一層絕緣層來消除閘極漏電流的設計可使得元件可靠度大為提升,這種堆疊結構被稱為金屬氧化物半導體結構,其能有效地避免蕭特基閘極結構所造成的問題。
本研究藉由非對稱雙極直流脈衝反應性濺鍍系統,沉積氧化鋁薄膜做為金屬氧化物半導體結構的閘極介電材,在不同氧比例與基板溫度條件下,以達到降低介電薄膜/AlGaN界面之缺陷密度,探討氧化鋁薄膜的介電性質的表現。在常溫環境下經由調變氧比例沉積氧化鋁薄膜,雖然不同氬氣與氧氣混合比例氛圍中,其氧化鋁薄膜沉積之介電性質不同,但由於其氧化程度不完全導致介電特性仍較差,後續本研究利用基板升溫進行直流脈衝反應性沉積氧化鋁薄膜於AlGaN/GaN上,經由電容-電壓量測來分析氧化鋁薄膜的性質,並計算其介電常數及界面缺陷密度的變化,目前初步得到在氧比例為0.87 %、基板溫度為300度條件下沉積之氧化鋁薄膜,經由成分組成分析得知其擁有好的化學劑量比,介電常數為3.87,氧化鋁薄膜/AlGaN界面缺陷密度(interface trap density)為2.08×1012 cm-2eV-1,並藉由時間相關介電崩潰測試得知在基板升溫下氧化鋁薄膜介電能力有大幅提升的現象。
AlGaN/GaN high-electron-mobility transistors (HEMTs) with excellent physical properties are attractive for high-power devices in next generation. However, metal and semiconductor interface with Schottky contact is easlier to leakage and the effective gate voltage was confined. Therefore, an insulating layer below the gate has to be introduced to eliminate gate leakage and improves devices reliability. This will give rise to the so called Metal Oxide Semiconductor (MOS) structures.
In this research, sputtered-Al2O3 thin film as dielectric layer to discuss the interface trap density (Dit) in different deposited oxygen flow (0.54 %, 0.87 %, 1.00 % and 1.55 %) and growth temperature (150 °C and 300 °C) conditions by asymmetric bipolar DC pulse reactive sputtering system. The sputtered films exhibit a stoichiometric composition, which was confirmed using X-ray photoelectron spectroscopy (XPS). Furthermore, using capacitance-voltage (C-V) measurement to analysis and calculate the values of dielectric constant and interface trap density. Ultimately, when the conditions of Al2O3 thin film deposited oxygen flow is 0.87 % and growth temperature at 300 °C, the dielectric constant and interface trap density are 3.87 and 2.08×1012 cm-2eV-1, respectively.
[1] S. Turuvekere, D. S. Rawal, A. DasGupta, and N. DasGupta, “Evidence of Fowler–Nordheim tunneling in gate leakage current of AlGaN/GaN HEMTs at room temperature,” IEEE Trans. Electron Devices, vol. 61, no. 12, pp. 4291–4294, (2014).
[2] Z. Yatabe, J. T. Asubar, and T. Hashizume, “Insulated gate and surface passivation structures for GaN-based power transistors,” J. Phys. D, Appl. Phys., vol. 49, no. 39, p. 393001, (2016).
[3] P. D. Ye et al., “GaN metal–oxide–semiconductor high-electronmobility-transistor with atomic layer deposited Al2O3 as gate dielectric,” Appl. Phys. Lett., vol. 86, no. 6, pp. 1–3, (2005).
[4] J. Shi and L. F. Eastman, “Correlation between AlGaN/GaN MISHFET performance and HfO2 insulation layer quality,” IEEE Electron Device Lett., vol. 32, no. 3, pp. 312–314, (2011).
[5] K. Watanabe et al., “Design and control of interface reaction between Al-based dielectrics and AlGaN layer in AlGaN/GaN metal-oxidesemiconductor structures” Appl. Phys. Lett. 111, 042102, (2017).
[6] K. Watanabe et al., “Design and control of interface reaction between Al-based dielectrics and AlGaN layer in AlGaN/GaN metal-oxide-semiconductor structures”, Appl. Phys. Lett. 111, 042102, (2017).
[7] S. Huang et al., “O3-sourced atomic layer deposition of high quality Al2O3 gate dielectric for normally-off GaN metal-insulator-semiconductor high-electron-mobility transistors”, Appl. Phys. Lett. 106, 033507, (2015).
[8] T. Hashizume, S. Ootomo, and H. Hasegawa, “Suppression of current collapse in insulated gate AlGaN/GaN heterostructure field-effect transistors using ultrathin Al2O3 dielectric” Appl. Phys. Lett. 83, 2952, (2003).
[9] X. Qin, H. Dong, J. Kim, and R. M. Wallace, “A crystalline oxide passivation for Al2O3/AlGaN/GaN ” Appl. Phys. Lett. 105, 141604, (2014).
[10] X. Qin et al. ” A comparative study of atomic layer deposition of Al2O3 and HfO2 on AlGaN/GaN”, J. Mater. Sci.: Mater. Electron. 26, 4638, (2015).
[11] Joseph J. Freedsman et al. ” Suppression of Gate Leakage and Enhancement of Breakdown Voltage Using Thermally Oxidized Al Layer as Gate Dielectric for AlGaN/GaN Metal–Oxide–Semiconductor High-Electron-Mobility Transistors” , (2011).
[12] Milan Ťapajna et al. “Low-temperature atomic layer deposition-grown Al2O3 gate dielectric for GaN/AlGaN/GaN MOS HEMTs: Impact of deposition conditions on interface state density”, J. Vac. Sci. Technol. B 35, 01A107, (2017).
[13] H. Liu, W. Ou and W. Hsu, "Investigation of Post Oxidation Annealing Effect on H2O2-Grown-Al2O3/AlGaN/GaN MOSHEMTs", IEEE Journal of the Electron Devices Society, vol. 4, no. 5, pp. 358-364, (2016).
[14] David A. Glocker, “ Influence of the plasma on substrate heating during low-frequency reactive sputtering of AIN”, Journal of Vacuum Science & Technology A 11, 2989, (1993).
[15] W.D. Sproul, D.J. Christie, D.C. Carter, “Control of reactive sputtering processes”, (2005).
[16] Guangxue Zhou, ” Deposition of nanostructured crystalline alumina thin film by twin targets reactive high power impulse magnetron sputtering”, Applied Surface Science, (2018).
[17] Bobzin, K., Lugscheider, E., Maes, M., & Piñero, C. “Relation of hardness and oxygen flow of Al2O3 coatings deposited by reactive bipolar pulsed magnetron sputtering “, Thin Solid Films, 494(1-2), 255–262. , (2006).
[18] Dao, V. A. et al., “ rf-Magnetron sputtered ITO thin films for improved heterojunction solar cell applications.” Current Applied Physics, 10(3), S506–S509. (2010).
[19] Eom, J. M., Oh, H. G., Cho, I. H., Kwon, S. J., & Cho, E. S. “ Effects of the Duty Ratio on the Niobium Oxide Film Deposited by Pulsed-DC Magnetron Sputtering Methods”, Journal of Nanoscience and Nanotechnology, 13(11), 7760–7765. (2013).
[20] Sproul, W. D., Graham, M. E., Wong, M. S., Lopez, S., Li, D., & Scholl, R. A. ”Reactive direct current magnetron sputtering of aluminum oxide coatings”, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 13(3), 1188–1191., (1995).
[21] Tang, X., Li, Z., Liao, H., & Zhang, J. “Growth of Ultrathin Al2O3 Films on n-InP Substrates as Insulating Layers by RF Magnetron Sputtering and Study on the Optical and Dielectric Properties”, Coatings, 9(5), 341., (2019).
[22] Kelly, P. J., Hall, R., O’Brien, J., Bradley, J. W., Roche, G., & Arnell, R. D. “Substrate effects during mid-frequency pulsed DC biasing”, Surface and Coatings Technology, 142-144, 635–641., (2001).
[23] Kelly, P. J., Abu-Zeid, O. A., Arnell, R. D., & Tong, J. “The deposition of aluminium oxide coatings by reactive unbalanced magnetron sputtering”, Surface and Coatings Technology, 86-87, 28–32., (1996).
[24] Barshilia, H. C., & Rajam, K. S. “Reactive sputtering of hard nitride coatings using asymmetric-bipolar pulsed DC generator”, Surface and Coatings Technology, 201(3-4), 1827–1835., (2006).
[25] Watanabe, K., Nozaki, M., Yamada, T., Nakazawa, S., Anda, Y., Ishida, M., Watanabe, H. “Design and control of interface reaction between Al-based dielectrics and AlGaN layer in AlGaN/GaN metal-oxide-semiconductor structures”, Applied Physics Letters, 111(4), 042102., (2017).
[26] Wilk, G. D., Wallace, R. M., & Anthony, J. M. “High-κ gate dielectrics: Current status and materials properties considerations”, Journal of Applied Physics, 89(10), 5243–5275., (2001).
[27] F. Sacconi, A. Di Carlo, P. Lugli and H. Morkoc, "Spontaneous and piezoelectric polarization effects on the output characteristics of AlGaN/GaN heterojunction modulation doped FETs," IEEE Transactions on Electron Devices, vol. 48, no. 3, pp. 450-457, (2001).
[28] Fagerlind, M., Allerstam, F., Sveinbjörnsson, E. Ö., Rorsman, N., Kakanakova-Georgieva, A., Lundskog, A., Janzén, E.,” Investigation of the interface between silicon nitride passivations and AlGaN/AlN/GaN heterostructures by C(V) characterization of metal-insulator-semiconductor-heterostructure capacitors”, Journal of Applied Physics, 108(1), 014508., (2010).
[29] Tapajna, M., Valik, L., Gregusova, D., Frohlich, K., Gucmann, F., Hashizume, T., & Kuzmlk, J., “Threshold voltage instabilities in AlGaN/GaN MOS-HEMTs with ALD-grown Al2O3 gate dielectrics: Relation to distribution of oxide/semiconductor interface state density.”, 2016 11th International Conference on Advanced Semiconductor Devices & Microsystems (ASDAM). (2016).
[30] Kim, T.-S., Lim, S.-Y., Park, Y.-K., Jung, G., Song, J.-H., Cha, H.-Y., & Han, S.-W. “Investigation of Defect Distributions in SiO2/AlGaN/GaN High-Electron-Mobility Transistors by Using Capacitance-Voltage Measurement with Resonant Optical Excitation.”, Journal of the Korean Physical Society, 72(11), 1332–1336., (2018).
[31] Jie-Jie Zhu, Xiao-Hua Ma, Yong Xie, Bin Hou, Wei-Wei Chen, Jin-Cheng Zhang, & Yue Hao., “Improved Interface and Transport Properties of AlGaN/GaN MIS-HEMTs With PEALD-Grown AlN Gate Dielectric”, IEEE Transactions on Electron Devices, 62(2), 512–518., (2015).
[32] A. Rawat et al., "Thermally Grown TiO2 and Al2O3 for GaN-Based MOS-HEMTs," in IEEE Transactions on Electron Devices, vol. 65, no. 9, pp. 3725-3731., (2018).
[33] Gao, Z., Romero, M. F., & Calle, F. “Thermal and Electrical Stability Assessment of AlGaN/GaN Metal–Oxide–Semiconductor High-Electron Mobility Transistors (MOS-HEMTs) With HfO2 Gate Dielectric”, IEEE Transactions on Electron Devices, 65(8), 3142–3148., (2018).
[34] Yang, S., Huang, S., Schnee, M., Zhao, Q.-T., Schubert, J., & Chen, K. J., “Fabrication and Characterization of Enhancement-Mode High-k LaLuO3-/AlGaN/GaN MIS-HEMTs.”, IEEE Transactions on Electron Devices, 60(10), 3040–3046., (2013).
[35] Mizue, C., Hori, Y., Miczek, M., & Hashizume, T., “Capacitance–Voltage Characteristics of Al2O3/AlGaN/GaN Structures and State Density Distribution at Al2O3/AlGaN Interface.”, Japanese Journal of Applied Physics, 50(2), 021001., (2011).
[36] Wang, Y.-H et al., “High-temperature studies of multiple fluorinated traps within an Al2O3 gate dielectric for E-Mode AlGaN/GaN power MIS-HEMTs.”, Semiconductor Science and Technology, 31(2), 025004. (2015).
[37] Miczek, M., Mizue, C., Hashizume, T., & Adamowicz, B., “Effects of interface states and temperature on the C-V behavior of metal/insulator/AlGaN/GaN heterostructure capacitors.”, Journal of Applied Physics, 103(10), 104510. , (2008)
[38] Hori, Y., Yatabe, Z., & Hashizume, T., “Characterization of interface states in Al2O3/AlGaN/GaN structures for improved performance of high-electron-mobility transistors.”, Journal of Applied Physics, 114(24), 244503., (2013).
[39] Konepachith Ouduangvilai et al., “Study of Gate Leakage Current on AlGaN/GaN MOS- HEMTs with Atomic Layer Deposited Al2O3 Gate Oxide”, JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.19, NO.6, DECEMBER, (2019)
[40] Lin, R.-M., Chu, F.-C., Das, A., Liao, S.-Y., Chou, S.-T., & Chang, L.-B. “Physical and electrical characteristics of AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors with rare earth Er2O3 as a gate dielectric.”, Thin Solid Films, 544, 526–529. (2013).
[41] Jie-Jie Zhu, Xiao-Hua Ma, Yong Xie, Bin Hou, Wei-Wei Chen, Jin-Cheng Zhang, & Yue Hao., “Improved Interface and Transport Properties of AlGaN/GaN MIS-HEMTs With PEALD-Grown AlN Gate Dielectric.” IEEE Transactions on Electron Devices, 62(2), 512–518., (2015).