| 研究生: |
廖昌昱 Chang Yu |
|---|---|
| 論文名稱: |
以微製程技術製備鋯鈦酸鉛壓電式微重量感測器 Microfabrication of PZT piezoelectric sensors for microgravimetric applications |
| 指導教授: |
蔡章仁
Jang Zern Tsai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 147 |
| 中文關鍵詞: | 鋯鈦酸鉛 、壓電感測器 |
| 外文關鍵詞: | PZT, piezoelectric sensor |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文使用溶膠凝膠法(sol-gel method)製備不同感測面積之鋯鈦酸鉛(PZT)薄膜,之後再利用旋轉塗佈法(spin-coating method)配合微製程技術製作出PZT壓電感測器。藉著X-Ray繞射實驗、電流密度、鐵電分析及阻抗量測,來分析壓電薄膜特性與品質。於本實驗微製程製備下,感測面積過大的試片,壓電薄膜常有較多的雜質與缺陷導致短路而失去本身特性,而以感測面積範圍從80 × 80 μm2到400 × 400 μm2於目前製程技術下特性較好也較易成功,且其共振頻率位於90 MHz~100 MHz之間。
另一部分為外部電路的建構,採用電晶體所組成之共振電路來驅動,並應用一般FM廣播接收IC,將類比共振頻率訊號轉換成直流電壓,最後使用Labview DAQ介面將系統連結至電腦,進而直接於電腦上觀察並監控感測訊號的變化。初步將水滴滴在感測晶片上可得到5~20 kHz的頻率變化,蛋白質(BSA)重量與頻率下降關係實驗方面,每95 ng之BSA所造成的頻率下降平均值為9.503206 kHz,標準差為0.538882 kHz,靈敏度為62.8 Hz cm2/ng
本實驗藉由微製程的技術使晶片微小化,提升晶片感測的靈敏度,並藉由周邊感測電路系統的整合製作,期望成為可攜式、高靈敏度及穩定的微重量感測系統,提供未來生物分子如蛋白質的重量感測。
Our research adopted microfabrication technology to create miniaturized piezoelectric sensors from PZT thin films with different sensing areas prepared with sol-gel method. The characterization and quality of these sensors were examined through X-Ray diffracting measurements, leakage current density analysis, ferroelectricity analysis and impedance measurements. From the results of those analyses, sensors with larger detecting areas failed more easily due to more impurities and defects. Better performances could be obtained with sensor areas from 80 × 80 μm2 to 400 × 400 μm2, with which the resonant frequencies were between 90‐100 MHz.
The other part of our research was the construction of peripheral circuits. We built transistor-based resonant circuits with PZT devices. The resonant frequency was detected with a conventional FM receiver IC, which transformed the frequency signal into a voltage output. The output was observed and monitored on the computer. Preliminary experiments showed that dripping the water on the sensing area caused a frequency change of 5‐20 kHz.
Our miniaturization and using of PZT material led to portable, sensitive and stable piezoelectric sensors. We expect the sensor system to be applicable in protein sensing in the future.
[1] P. L. Konash, and G. J. Bastiaans, “Piezoelectric Crystal as Detectors in Liquid Chromatography,” Anal. Chem., vol. 52, pp. 1929-1931, 1980.
[2] T. Nomura, “Single-Drop Method for Determination of Cyanide in Solution with a Piezoelectric Quartz Crystal,” Anal. Chim. Acta, vol. 124, pp. 81-84, 1981.
[3] T. Nomura, and M. Iijima, “Electrolytic Determination of Nanomolar Concentrations of Silver in Solution with a Piezoelectric Quartz Crystal,” Anal. Chim. Acta, vol. 131, pp. 97-102, 1981.
[4] M. Thompson, C. L. Arthur, and G. K. Dhaliwal, “Liquid-Phase Piezoelectric and Acoustic Transmission Studies of Interfacial Immunochemistry,” Anal. Chem., vol. 58, pp. 1206-1209, 1986.
[5] H. Murumatsu, K. Kajiwara, E. Tamiya, and I. Karube, “Piezoelectric Immuno Sensor for the Detection of Candida albicans Microbes,” Anal. Chim. Acta, vol. 188, pp. 257-261, 1986.
[6] White F. M., “Viscous Fluid Flow,” McGraw-Hill, New York 1974.
[7] S. Bruckenstein, and M. Shay, “Experimental Aspects of Using Quartz Crystal Microbalance in Solution,” Electrochim. Acta, vol. 30, pp. 1295-1300, 1985.
[8] K. K. Kanazawa, and J. G. Gordon, “Frequency of a Quartz Microbalance in Contact with Liquid,” Anal. Chem., vol. 57, pp. 1770-1771, 1985.
[9] J.F.Scott, C.A.P.de Araujo, L.D.McMillan, H.Yoshimori, H.Watanabe, T.Mihara, M.Azuma, T.Ueda, Tetsuk Ueda, D.Ueda, and G.Kano, “Ferroelectric Thin Films in Integrated Microelectronic Devices,” Ferroelectrics, vol. 133, pp. 47, 1992.
[10] G.H.Haerting, “Ferroelectric Thin Film for Electronic Applications”, J. Vac. Sci. Technol., vol. A9(3), pp. 414, 1991.
[11] L.M.Sheppard, “Advances in Processing of Ferroelectric Thin Film,” Ceramic Bulletin, vol. 71(1), pp. 85, 1992.
[12] M.Sayer and K.Sreenivas, “Ceramic Thin Film: Fabrication and Applications,” Science, vol. 247, pp. 1056, 1990.
[13] G.Yi and M.Sayer, “Sol-gel Processing of Complex Oxide Films,” Ceramic Bulletin, vol. 70(7), pp. 1173, 1991.
[14] 林諭男,"強介電陶磁薄膜的應用",工業材料,107,(1995)49.
[15] 惠汝生, “Labview 8.X圖控程式應用”, 全華科技圖書, p23~p44.
[16] R. Vaidya, R. J. Simonson, J. Cesarano, D. Dimos, G. P. Lopez, “Formation and Stability of Self-Assembled Monolayers on Thin Films of Lead Zirconate Titanate (PZT),” Am. Chem. Soc., vol. 12, pp. 2830-2836, 1996.
[17] D. Charles, E. Lakeman, and D. A. Payne, “Processing Effects in the Sol-Gel Preparation of PZT Dried Gels, Powders, and Ferroelectric Thin Layers,” J. Am. Ceram. Soc., vol. 75, pp. 3091-3096, 1992.
[18] X. Zheng, Y. Zhou, Z. Yan, “Dependence of Crystalline, Ferroelectric and Fracture Toughness on Annealing in Pb(Zr0.52Ti0.48)O3 Thin Films Deposited by Metal Organic Decomposition,” Mater. Res., vol. 6, pp. 551-556, 2003.
[19] S. Y. Chen, “Texture evolution and electrical properties of oriented PZT thin films,” Mater. Chem. Phys., vol. 45, pp.159-162, 1996.
[20] 饒珮瑩, “利用微機電技術設計及製作壓電式微型加速計”, 國立成功大學航太系碩士論文, 民國92年7月。
[21] C. Kugeler, P. Gerber, U. Bottger, and R. Waser, “Thickness dependence of piezoelectric properties for PZT thin films with regard to MEMS applications,” Integrated Ferroelectrics, vol. 54, pp. 527-535, 2003.
[22] 葉宇寰, “以溶膠-凝膠法及不同熱處理技術製備鉭酸鋰焦電薄膜紅外線感測元件之研究”, 國立中山大學電機系碩士論文, 民國94年7月。
[23] P. Juan, Y. Hu, F. Chiu, J. Y. Lee, “The electrical properties of Metal–Ferroelectric(PbZr0.53Ti0.47O3)–Insulator–Silicon(MFIS) capacitors with different insulator materials,” Microelectron. Eng., vol. 80, pp. 309–312, 2005.
[24] S.K. Pandey, A. R. James, R. Raman, S. N. Chatterjee, A. Goyal, C. Prakash, T. C. Goel, “Structural, ferroelectric and optical properties of PZT thin films,” Physica B, vol. 369, pp. 135–142, 2005.
[25] D. Damjanovic, “Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics,” Rep. Prog. Phys., vol. 61, pp. 1267-1324, 1998.
[26] J. H. Park, T. Y. Kwon, and H. J. Kim, “Resonance properties and sensitivity of monolithic microcantilever sensors actuated by piezoelectric PZT thick film,” J. Electroceram., vol. 17, pp. 565-572, 2006.
[27] E. H. Yang, Y. Hishinuma, and J. G. Cheng, “Thin-film piezoelectric unimorph actuator-based deformable mirror with a transferred silicon membrane,” J. Microelectromech. Syst, vol. 15, pp. 1214-1225, 2006
[28] Q. Zhou, J. M. Cannata, and R. J. Meyer, “Fabrication and characterization of micromachined high-frequency tonpilz transducers derived by PZT thick films,” IEEE Trans. UFFC, vol. 52, pp. 350-357, 2005.
[29] M. J. Zipparo, K. K. Shung, and T. R. Shrout, “Piezoceramics for High-Frequency (20 to 100 MHz) Single-Element Imaging Transducers,” IEEE Trans. UFFC, vol. 44, pp. 1038-1048, 1997.
[30] L. E. Cross, ”Ferroelectric Ceramics: Tailoring Properties for Specific Applications,” Basel: Birkhauser Verlag., pp. 1-144, 1993.
[31] S. G. Lee, Y. H. Lee, “Dielectric properties of sol-gel derived PZT(40/60)/PZT(60/40) heterolayered thin films, ”Thin Solid Films, vol. 353, pp. 244-248, 1999.
[32] S. J. Martin, H. L. Bandey, and R. W. Cernosek, “Equivalent circuit model for the thickness shear mode resonator with a viscoelastic film near film resonance,” Anal. Chem., vol. 72, pp. 141–149, 2000.
[33] R. Cernosek, S. J. Martin, A. R. Hillman, and H. L. Bandey, “Comparison of lumped-element and transmission-line models for thicknessshear-mode quartz resonator sensors,” IEEE Trans. UFFC, vol. 45, pp. 1399–1407, 1998.
[34] 陳連春譯,”振盪電路設計應用鐵則”,建興出版社,1995
[35] E. Hong, S. T. Mckinstry, R. L. Smith, S. V. Krishnaswamy, C. B. Freidhoff, “Design of MEMS PZT circular Diaphragm actuators to generate large deflection,” J. Microelectromech. Syst., vol. 15, pp. 832-839, 2006.
[36] 吳朗, “電子陶瓷壓電” 全欣科技圖書, p206~p207.
[37] J. W, W. M. A., J. T., M. L., R. G., W. W., M. S., “Shear mode FBARs as highly sensitive liquid biosensors,” Sens. Actuators, A, vol. 128, pp. 84-88, 2006.
[38] 林佳珈, “穿膜胜肽與生物細胞膜間的交互作用之探討(Ι)-膽固醇的含量對蜂毒胜肽穿膜機制之影響” 國立中央大學化材系碩士論文, 民國93年5月。
[39]http://www.ikm.uni-karlsruhe.de/forschung/pzt_webseiten/eng/pzt_startpage_eng.html