| 研究生: |
康楹婕 Ying-Chieh Kang |
|---|---|
| 論文名稱: |
利用半母數模型計算三臂非劣性試驗的樣本數 |
| 指導教授: |
曾議寬
Yi-Kuan Tseng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 統計研究所 Graduate Institute of Statistics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 三臂試驗 、非劣性 、AFT模型 、半參數 、最佳樣本數 |
| 外文關鍵詞: | Three-arm design, non-inferiority, AFT model, semiparametric, optimal sample size |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此篇研究提出了一種統計方法,用於規劃和評估非劣性臨床試驗的樣本數,採用黃金標準設計,用於具有右設限的事件發生數據,其中,黃金標準設計包括實驗藥物、活性對照要與安慰劑,另外,在右設限的部分,行政設限與失去追蹤設限都有被考慮進去。本文的研究目的是計算三臂非劣性試驗的最佳的樣本數以及對於各治療組別的最佳分配,同時,在對立假設下,可以達到所希望的檢定力。使用的方法是一種半參數的方法,使用的模型為AFT模型,並假設試驗終點指標分別為Weibull、Loglogistic以及Lognormal分配去做討論,這三個分配都是在醫學研究中常用的分配。另外,我們也跟Karola等人在2013年提出的方法做比較,他們使用的模型為Cox迴歸模型,此模型具有比例風險的假設,並且假設試驗終點指標為Weibull,根據我們的結果,發現Cox迴歸模型在固定個樣本數的分配比例下的最佳樣本數不會受到Weibull的形狀參數影響;反之,AFT模型則會受到Weibull的形狀參數的改變而改變。最後,我們將提出的方法應用到膀胱癌復發的臨床試驗上,並與參數模型、Cox迴歸模型作比較。
This study presents a statistical method for planning and evaluating sample sizes for non-inferiority clinical trials using a gold-standard design for time-to-event data with right-censored data, where the gold-standard design includes an experimental treatment, an active control and a placebo. Additionally, in the right-censored data, both administrative and lost to follow-up were taken into account. The purpose of this study is to calculate the optimal sample size for a three-arm non-inferiority trial and the optimal allocation to each treatment group, and at the same time, a desired power can be attained under the alternative hypothesis. The method used is a semiparametric approach, and the model used is the AFT model. It is assumed that the endpoints of the trial are Weibull, Loglogistic, and Lognormal distribution, which are commonly used in medical research. In addition, we also compare with the method proposed by Karola et al. in 2013. The model they used is Cox proportional hazards model, which has a proportional hazards assumption and assumes that the endpoints to be Weibull distributed. According to our results, it is found that the optimal number of sample size of the Cox proportional hazards model under the fixed proportion sample size of each treatment will not be affected by the shape parameter of Weibull; conversely, the AFT model will be changed by the change of the shape parameter of Weibull. Finally, we applied the proposed method to a clinical trial of bladder cancer recurrence and compared it with a parametric model and a Cox proportional hazards model.
Agresti, A. (2007). An Introduction to Categorical Data Analysis, 2nd ed. New York: John Wiley & Sons. Page 38.
Chiou, S. H., Kang, S. and Yan, J. (2014). Fitting Accelerated Failure Time Models in Routine Survival Analysis with R Package aftgee. Journal of Statistical Software 61, Issue 11.
Conn, A. R., Scheinberg, K. and Vicente, L.N. (2009). Introduction to Derivative-Free Optimization, MPS/SIAM Series on Optimization. Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA.
Cox, D. R. (1972). Regression models and life-tables. Journal of the Royal Statistics Society series B 34, 187-220.
FDA (1998). E9 statistical principles for clinical trials. Food and Drug Administra-tion.
FDA (2000). E10 Choice of control group and related issues in clinical trials. Food and Drug Administration.
Hasler, M., Vonk, R. and Hothorn, L. A. (2008). Assessing non-inferiority of an new treatment in a three-arm trial in the presence of heteroscedasticity. Statistics in Medicine 27, 490–503.
Hauschke, D. and Pigeot, I. (2005). Establishing efficacy of a new experimental treatment in the ’gold standard’ design. Biometrical Journal 47, 782–786.
Hope, A. C. A. (1968). A simplified Monte Carlo significance test procedure. Journal of the Royal Statistical Society Series B 30, 582–598.
Jones, M. C. (1990). The performance of kernel density functions in kernel distribution function estimation. Statistics and Probability Letter 9, 129–132.
Jones, M. C. and Sheather, S. J. (1991). Using non-statistic terms to advantage in kernel-based estimation of integrated squared density derivatives. Statistics and Probability Letter 11, 511–514.
Kalbfleisch, J. D. and Prentice, R. L. (2002). The statistical analysis of failure time data. Wiley Series in Probability and Statistics.
Karola, K., Axel, M. and Tim, F. (2013). Design and semiparametric analysis of
non-inferiority trials with active and placebo control for censored time-to-event data. Statistics in Medicine 32, 3055–3066.
Kieser, M. and Friede, T. (2007). Planning and analysis of three-arm non-inferiority trials with binary endpoints. Statistics in Medicine 26, 253–273.
Lange, S. and Freitag, G. (2005). Choice of delta: requirements and reality–results of a systematic review. Biometrical Journal 47, 12–27.
Meinhard, K. and Tim, F. (2007). Planning and analysis of three-arm non-inferiority trials with binary endpoints. Statistics in Medicine 26, 253–273.
Mielke, M. and Munk, A. (2009). The assessment and planning of non-inferiority trials for retention of effect hypotheses-towards a general approach. Institute for Mathematical Stochastics, University of Go ̈ttingen.
Mielke, M., Munk, A. and Schacht, A. (2008). Planning and assessing non-inferiority in a gold standard design with censored,exponentially distributed endpoints. Statistics in Medicine 27, 5093–5110.
Patefield, W. M. (1981). Algorithm AS 159: An efficient method of generating R x C tables with given row and column totals. Applied Statistics 30, 91–97.
Pigeot, I., Schäfer, J., Röhmel, J. and Hauschke, D. (2003). Assessing non-inferiority of an new treatment in a three-arm clinical trial including a placebo. Statistics in Medicine 22, 883–899.
Tseng, Y. K. and Shu, K. N. (2011). Efficient Estimation for a Semiparametric Extended Hazards Model. Communications in Statistics - Simulation and Computation 40, 2, 258-273.
Wei, L. J., Lin, D. Y. and Weissfeld, L. (2015). Regression Analysis of Multivariate Incomplete Failure Time Data by Modeling Marginal Distributions. Journal of the American Statistical Association 84, 408, 1065-1073.
林建甫(2008)。存活分析。台北市:雙葉書廊初版。
張晉豪(2019)。如何估計優越性、等效性及非劣性臨床試驗所需之樣本數。醫學研究部(Department of Medical Research),共同研究室電子報第七十期。
三軍總醫院泌尿外科膀胱癌介紹。
亞洲大學附屬醫院膀胱癌介紹。
王家芸(2019)。Statistical Design for Three-Arm Bioequivalence and Non-Inferiority Confirmatory Clinical Trials Using Binary Outcome as Primary Endpoint. 國立中央大學統計研究所碩士論文。
吳雅琪(2012)。不劣性試驗統計審查重點。當代醫藥法規第二十二期。