| 研究生: |
許進嘉 Chin-chia Hsu |
|---|---|
| 論文名稱: |
非同調區塊編碼三十二點QAM Noncoherent Block-Coded 32QAM |
| 指導教授: |
魏瑞益
Ruey-yi Wei |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 通訊工程學系 Department of Communication Engineering |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 50 |
| 中文關鍵詞: | 非同調檢測器 、區塊編碼調變 、正交振幅調變 |
| 外文關鍵詞: | block-coded modulation, quadrature amplitude modulation (QAM), noncoherent detection |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在此篇論文中,我們探討適用於非同調檢測之區塊編碼三十二點的正交振福調變(QAM),並且提出一個新的非調區塊編碼調變架構。我們推導出使用三十二點QAM 之區塊編碼的最小非同調距離,根據結果提出非同調區塊編碼三十二點QAM 架構。在相同資料傳輸率下,我們比較非同調區塊編碼十六點QAM 以及非同調區塊編碼三十二點QAM 的最小非同調距離和錯誤效能。對於不同區塊長度以及不同的構成碼,我們也針對非同調區塊編碼三十二點QAM 的錯誤效能模擬結果進行分析。
In this thesis, we focus on block-coded 32QAM (quadrature-amplitude modulation) for noncoherent detection, and propose a new noncoherent block-coded modulation schemes. The minimum noncoherert distance of block-coded 32QAM is derived, and noncoherent block-coded 32QAM (NBC-32QAM) is proposed accordingly. We compare NBC-32QAM with NBC-16QAM for the minimum noncoherent distances and error performance with same data rate. For different block length and code rate, we also analyze the simulation results of error performance of NBC-32QAM.
[1] R. Knopp and H. Leib, “M-ary coding for the noncoherent AWGN channel,” IEEE Trans. Inform. Theory, vol. 40, pp. 1968-1984, Nov. 1994.
[2] F. W. Sun and H. Leib, “Multiple-phase codes for detection without carrier phase reference,” IEEE Trans. Inform. Theory,vol. 44, pp. 1477-1491, July 1998.
[3] R. Y. Wei, “Noncoherent block-coded MPSK,” IEEE Trans. Commun., vol. 53, pp. 978-986, June 2005.
[4] R. Y. Wei and Y. M. Chen, “Further results on noncoherent block-coded MPSK,” IEEE Trans. Commun., vol. 56, pp. 1616-1625, Oct. 2008.
[5] R. Y. Wei, S. S. Gu and T. C. Sue, “Noncoherent block-coded TAPSK,” IEEE Trans. Commun.,.
[6] D. Warrier and U. Madhow, “Spectrally efficient noncoherent communication,” IEEE Trans. Inform. Theory, vol. 48,pp. 651-668, Mar. 2002.
[7] S. Sayegh, “A class of optimum block codes in signal space,” IEEE Trans. Commun., vol. 30, pp. 1043-1045, Oct. 1986.
[8] T. Kasami, T. Takata, T. Fujiwara, and S. Lin, “On multilevel block modulation codes,” IEEE Trans. Inform. Theory,vol. 37, pp. 965-975, July 1991.
[9] T. Takata, S. Ujita, T. Kasami, and S. Lin, “Multistage decoding of multilevel block M-PSK modulation codes and its performance analysis,” IEEE Trans. Inform. Theory, vol. 39, pp. 1204-1218, July 1993.
[10] H. Imai and S. Hirakawa, “A new multilevel coding method using error correcting codes,” IEEE Trans. Inform. Theory,vol. 23, pp. 371-376, May. 1977.
[11] U. Wachsmann, R. F. H. Fischer, and J. B. Huber, “Multilevel codes:theoretical concepts and practical design rules,” IEEE Trans. Inform. Theory, vol. 45, pp. 1361-1391, July 1999.
[12] G. Ungerboeck, “Channel coding with multilevel/phase signals,” IEEE Trans. Inform. Theory, vol. 28, pp. 55-67, Jan. 1982.
[13] R. R. Chen, R. Koetter, U. Madhow, and D. Agrawal, “Joint noncoherent demodulation and decoding for the block fading channel: A practical framework for approaching Shannon capacity,” IEEE Trans. Commun., vol. 51, pp. 1676-1689. Oct.2003.
[14] G. Colavolpe and R. Raheli, “Noncoherent sequence detection,” IEEE Trans. Commun., vol. 47, pp. 1376-1385, Sept.1999.
[15] R. Fischer, L. Lampe and S. Calabro, “Differential encoding strategies for transmission over fading channels,” Int. Journal of Elect. and Comm., pp. 59-67, Jan. 2000.
[16] S. S. Gu, “Noncoherent Block-Coded Modulation with Sixteen Signal Points” M.S. thesis, National Central University, 2007
[17] R. Y. Wei, T. C. Sue, H. H. Wang, C.-S. Wang, “Noncoherent Block-Coded QAM,” IEEE International Conference on Communications (ICC), pp.24-28 ,June 2007