| 研究生: |
呂冠武 Kuan-Wu Lu |
|---|---|
| 論文名稱: |
基於光聲訊號之三維資訊重建 3D information reconstruction based on photoacoustic signal |
| 指導教授: |
鍾德元
Te-Yuan Chung |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 光聲訊號 、三維資訊重建 、光聲影像 |
| 外文關鍵詞: | 2D scanning |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
光聲影像系統同時結合了光學影像與超聲波影像系統的優點,具有光學的高對比、高解析度,藉由樣品對雷射波長的選擇性吸收,再透過超收波探頭接收對軟組織有高穿透性的超聲波訊號。
本研究使用波長為1064 nm的Q-switch脈衝雷射來激發超聲波訊號,在訊號處理中,單一位置的光聲波訊號在數學演算法的計算後可以取得兩個重要的樣品參數,光聲訊號初始位置和最大聲壓值,分別表示著此單一位置與偵測探頭的距離和樣品物理特性。藉由控制步進馬達(電動平移台)讓樣品在二維空間中掃描可以重建樣品表面在空間中的幾何結構與材料特性。本團隊也嘗試了不同的樣品,來驗證本系統的可信度,最後為了模擬生物組織的樣品,製作了許多複合式的材料,也成功地還原出樣品表面的三維光聲影像。
Photoacoustic imaging system has both advantages of optical imaging system and ultrasonic imaging system. Using material’s absorption of certain wavelength, then reconstruct image by the photoacoustic signal received through low scattering acoustic wave, with high resolution of optical image systems and low scattering of ultrasonic image system.
In this study, a 2D translation stage scanning photoacoustic image system is built. The photoacoustic wave is excited by Q-switch pulse laser with 1064 nm wavelength. In each scanning position, two important parameters, signal starting position and maximum amplitude of acoustic pressure, will be calculated from photoacoustic signal. With 2D scanning of sample, the spacial distribution of sample’s surface and material information can be reconstruct.
1. Bell, A.G., On the production and reproduction of sound by light. American Journal of Science, 1880. Series 3 Vol. 20 no. 118: p. 305-320.
2. Bell, A.G., LXVIII.Upon the production of sound by radiant energy, in Philosophical Magazine. 1880. p. 510.
3. Karabutov, A.A., E.V. Savateeva, and A.A. Oraevsky, Optoacoustic tomography: New modality of laser diagnostic systems. Laser Physics, 2003. 13(5): p. 711-723.
4. Kolkman, R.G.M., et al., In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor. Ieee Journal of Selected Topics in Quantum Electronics, 2003. 9(2): p. 343-346.
5. Kolkman, R.G.M., et al., Photoacoustic determination of blood vessel diameter. Physics in Medicine and Biology, 2004. 49(20): p. 4745-4756.
6. Zhang, H.F., et al., Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nature Biotechnology, 2006. 24(7): p. 848-851.
7. Zhang, H.F., K. Maslov, and L.H.V. Wang, In vivo imaging of subcutaneous structures using functional photoacoustic microscopy. Nature Protocols, 2007. 2(4): p. 797-804.
8. Maslov, K., et al., Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries. Optics Letters, 2008. 33(9): p. 929-931.
9. de la Zerda, A., et al., Photoacoustic ocular imaging. Optics Letters, 2010. 35(3): p. 270-272.
10. Zhang, H.F., et al., Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nature Biotechnology, 2006. 24(7): p. 848-851.
11. Pierce AD , B.Y., Validity of linear acoustics for prediction of waveforms caused by sonically moving laser beams. The Journal of the Acoustical Society of America, 1988.
12. Hoelen, C.G.A. and F.F.M. de Mul, A new theoretical approach to photoacoustic signal generation. Journal of the Acoustical Society of America, 1999. 106(2): p. 695-706.
13. Cross-correlation. 15 March 2016, at 23:18; Available from: https://en.wikipedia.org/wiki/Cross-correlation.
14. WANG, Z., Image quality assessment: From error visibility to structural similarity.
15. Xu, M. and L.V. Wang, Photoacoustic imaging in biomedicine. Review of Scientific Instruments, 2006. 77(4): p. 041101.
16. Xie, Z., et al., Laser-scanning optical-resolution photoacoustic microscopy. Optics Letters, 2009. 34(12): p. 1771-1773.
17. Zharov, V.P., et al., In vivo photoacoustic flow cytometry for monitoring of circulating single cancer cells and contrast agents. Optics Letters, 2006. 31(24): p. 3623-3625.
18. J. W. Goodman, Introduction to Fourier optics (McGraw-Hill, 1968)