| 研究生: |
吳慶鴻 Ching-hung Wu |
|---|---|
| 論文名稱: |
磁場對水電解產氫效率增益之機制研究 The investigation on the mechanism of efficiency enhancement for hydrogen production by water electrolysis with magnetic field |
| 指導教授: |
洪勵吾
Lih-wu Hourng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程研究所 Graduate Institute of Energy Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 電解水 、勞侖茲力 、磁流體動力學 |
| 外文關鍵詞: | Water electrolysis, Lorenz force, magnetohydrodynamic |
| 相關次數: | 點閱:22 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗利用鎳電極,在電解液氫氧化鉀濃度25wt%時,進行電解水產氫,由恆電位儀與高速攝影機所記錄得到的資料,探討不同電流密度、電極間距加入磁場後,氣泡上升速度與氣泡覆蓋率,受到磁流體動力學(MHD)中向上勞侖茲力(Lorentz force)之影響。
加入磁場狀態下,磁力會形成向上之勞倫茲力,促使氣泡加速脫離電極表面,因此,由拍攝之圖片顯示出,在不同之電極間距、不同之電流密度,氣泡速度皆會增加,而氣泡覆蓋率則是會下降,並且發現,電極表面上之最大顆氣泡較小、分布數量最多的氣泡,其直徑也較小。
結合氣泡速度與覆蓋率,可得體積流率之結果,加入磁場狀態下,電極間距2 mm、電流密度0.3 A/m^2,體積流率增加率為67.8 %;電極間距5 mm、電流密度0.3 A/m^2,體積流率增加率為42 %,兩者節省之電功率百分比,也皆有極小之增加值。
水電解產氫是目前製造氫氣常用之方法,而磁場無須耗費額外之能量,卻能使產氫效率增加,也能節省能量之消耗,在未來相當具發展潛力。
As water electrolysis is conducted with an electric field perpendicular to a magnetic field, Lorenz force will produce magnetohydrodynamic (MHD) convection and affect the gas bubble evolution. This experiment uses nickel as electrodes, and the potassium hydroxide electrolyte concentration is 25wt%. Potentiostat and high-speed camera are used to record the bubble evolution.
The upward Lorentz force can accelerate the speed bubbles to leave the surface of the electrode, which lowers the electrochemical polarization. Therefore, from the bubble behavior shown in the picture. We observe that all the bubbles will be speeded under the action of Lorenz force for different electrode distances and current densities. However, the coverage of bubbles is reduced. The biggest bubble on the electrode surface is smaller. The bubble diameter of the maximum amount of bubbles distribution is smaller.
Bubble flow rate can be obtained by combing the bubble speed and coverage. In a upward Lorentz force, the electrode distance 2 mm and current density 0.3 A/m^2, the flow rate increases about 67.8%. While it is about 42% for the electrode distance 5 mm and current density 0.3 A/m^2. The economic power efficiency was also saved a little.
Water electrolysis is a commonly used method to produce Hydrogen. Magnetic field does not need to consume additional energy. However, it can increase hydrogen production efficiency and reduce energy consumption. Water electrolysis adds magnetic field has development potential in the future.
[1] 陳維新著,能源概論第五版,高立出版社(2011)。
[2] S. Dunn, “Hydrogen futures: toward a sustainable energy system,” International Journal of Hydrogen Energy, Vol.27, pp.235-264(2002).
[3] D. Lj. Stojić, M. P. Marčeta, S. P. Sovilj and Š. S. Miljanić, “Hydrogen generation from water electrolysis – possibilities of energy saving,” International Journal of Power Sources, Vol.118, pp.315-319(2003).
[4] N. Nagai, M. Takeuchi, T. Kimura and T. Oka, ”Existence of optimum space between electrodes on hydrogen production by water electrolysis”, International Journal of Hydrogen Energy, Vol. 28, pp. 35-41(2003).
[5] S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umno and H. Tributsch, “Over 18% solar energy conversion to generation of hydrogen fuel; theory and experiment for efficient solar water splitting,” International Journal of hydrogen Energy, Vol.26, pp.653-659(2001).
[6] R. F. de Souza, J. C. Padilha, R. S. Gonçalves and J. Rault-Berthelot, “Dialkylimidazolium ionic liquids as electrolytes for hydrogen production from water electrolysis,” Electrochemistry Communications,Vol.8, pp.211-216(2006).
[7] P. K. Dubey, A.S.K. Sinha, S. Talapatra, N. Koratkar, P.M. Ajayan and O.N. Srivastava, “Hydrogen generation by water electrolysis using carbon nanotube anode,” International Journal of Hydrogen Energy, Vol.35, pp. 3945-3950(2010).
[8] R. Solmaz, “Electrochemical preparation and characterization of C/Ni–NiIr composite electrodes as novel cathode materials for alkaline water electrolysis,” International Journal of Hydrogen Energy, Vol.38, pp. 2251-2256(2013).
[9] F. Marangio and M. Santarelli, M. Cali, “Theoretical model and experimental analysis of a high pressure PEM water electrolyser for hydrogen production,” International Journal of Hydrogen Energy, Vol. 34, pp. 1143-1158.(2009).
[10] S. A. Grigoriev, P. Millet, S. V. Korobtsev, V. I. Porembskiy, M. Pepic, C. Etievant, C. Puyenchet and V. N. Fateev, “Hydrogen safety aspects related to high-pressure polymer electrolyte membrane water electrolysis,” International Journal of Hydrogen Energy, Vol.34, pp.5986-5991(2009).
[11] H. Matsushima, Y. Fukunaka and K. Kuribayashi, “Water electrolysis under microgravity: Part II. Description of gas bubble evolution phenomena,” Electrochimica Acta, Vol.51, pp.4190-4198(2006).
[12] M. Wang, Z. Wang and Z. Guo, “Water electrolysis enhanced by super gravity field for hydrogen production,” International Journal of Hydrogen Energy, Vol.35, pp. 3198-3205(2010).
[13] S. D. Li, C. C. Wang and C. Y. Chen, “Water electrolysis in the presence of an ultrasonic field,” Electrochimica Acta, Vol.54, pp. 3877-3883(2009).
[14] T. Weier, J. Huller, G. Gerbeth and F. Weiss, “Lorentz force influence on momentum and mass transfer in natural convection copper electrolysis”, Chemical Engineering Science, Vol 60, pp. 293 – 298. (2005).
[15] T. Iida, H. Matsushima and Y. Fukunaka,“Water Electrolysis under a magnetic Field,” Journal of The Electrochemical Society, Vol. 154, pp.112-115(2007).
[16] H. Matsushima, D. Kiuchi and Y. Fukunaka,“Measurement of dissolved hydrogen supersaturation during waterelectrolysis in a magnetic field,” Electrochimica Acta, Vol. 54 , pp. 5858-5862(2009).
[17] H. Matsushima, T. Iida and Y. Fukunaka, “Gas bubble evolution on transparent electrode during water electrolysis in a magnetic field,” Electrochimica Acta, Vol. 100, pp. 261-264(2013).
[18] J. A. Koza, S. Mühlenhoff, P. Żabiński, P. A. Nikrityuk, K. Eckert, M. Uhlemann, A. Gebert, T. Weier, L. Schultz and S. Odenbach, “Hydrogen evolution under the influence of a magnetic field,” Electrochimica Acta, Vol. 56, pp. 2665-2675(2011).
[19] M. Y. Lin, L. W. Hourng and C. W. Kuo, “The effect of magnetic force on hydrogen production efficiency in water electrolysis,” Int. J. Hydrogen energy, Vol 37, pp. 1311-1320(2011).
[20] M. Y. Lin and L. W. Hourng, “Effects of magnetic field and pulse potential on hydrogen production via water electrolysis,” International Journal of Energy Research, Vol. 38, pp. 106-116(2014).
[21] H. Zhang, G. Lin and J. Chen, “Evaluation and calculation on the efficiency of a water electrolysis system for hydrogen production,” Int J Hydrogen Energy, Vol 35, pp. 10851-10858(2010).
[22] K. Zeng and D. Zhang, “Recent progress in alkaline water electrolysis for hydrogen production and applications,” Progress in Energy and Combustion Science, Vol.36, pp.307-326(2010).
[23] P. Ridge, “Hydrogen manufacture by electrolysis, thermal decomposition and unusual techniques,” Noyes Data corporation, New Jersey, M. S. Casper(1987).
[24] J. Ivy, Summer of electrolytic hydrogen production: milestone completion report, National Renewable Energy Laboratory, Colorado(2004).
[25] F. Guttman and O. J. Murphy, Modern Aspects of Electrochemistry. New York: Plenum Press(1983).
[26] 魚崎浩平,喜多英明同撰,黃忠良譯,基本電化學,復漢出版社(1983)。
[27] J. Koryta, W. Dvorak and L. Kavan, Principles of Electrochemistry Second Edition, John Wiley and Sons, New York(1993).
[28] 田福助,電化學基本原理與應用,五洲出版社 (2004)。
[29] O. Darrigol, Electrodynamics from Ampère to Einstein, Oxford, [England]: Oxford University, pp. 327 (2000).
[30] 張啟陽,電磁學,東華書局(1992)。
[31] H. D. Young, University Physics, 8th Ed., Addison-Wesley,(1992).
[32] J. M. Gras and P. Spiteri, “Corrosion of stainless steels and nickel based alloys for alkaline water electrolysis,” International Journal of Hydrogen Energy, Vol. 18, pp. 561-566 (1993).
[33] 田中正三郎著、賴耿陽譯著,應用電化學,應用新科技-應用電化學,復漢出版社印行(1998)。
[34] M. P. Marčeta and D. L. Stojić, “Comparison of different electrode materials–energy requirements in the electrolytic hydrogen evolution process,” Journal of Power Sources, Vol. 157, pp. 758-764(2006).