| 研究生: |
林恩楷 En-Kai Lin |
|---|---|
| 論文名稱: |
利用高光譜影像偵測外來植物-以恆春地區銀合歡為例 Detecting Invasive Plant Species Using Hyperspectral Satellite Imagery |
| 指導教授: |
蔡富安
Fuan Tsai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 外來植物 、高光譜 、主軸轉換 |
| 外文關鍵詞: | PCA, invasive plants, hyperspectral |
| 相關次數: | 點閱:4 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
外來物種的入侵,通常會對本土物種和生態造成影響。在南台灣的恆春地區,原產中南美洲的銀合歡,因過去人為不當的決策和其本身優越的生長能力,在當地大量的繁殖,威脅到當地豐富的生態。
目前對於外來植物的監測,大多採用人工現地調查,或是人工判釋航照、衛星影像的方式來進行,但成果精度掌握不易且不甚客觀。如採自動化分類的方式,只含少數波段的多光譜影像光譜資訊不足,常無法仔細且精確地區分植物,亦不能真正達到監測的目的。隨著遙測技術的進步,遙測影像的波段數從以往個位數波段的多光譜提升至上百個波段的高光譜,高光譜提供了大量且連續的高維度光譜資訊,因此,如何降低維度且萃取出有利植物間分類的資訊,為本研究重要課題。而PCA (Principle Component Analysis)主軸轉換為一般高光譜影像降低維度萃取特徵資訊的常用方法之一,不過其缺點為可能在特徵萃取時忽略差異較小但卻有助分類的資訊。因此,本研究使用在光譜上切割區塊的區段式PCA (Segmented Principle Component Analysis),企圖更有效從高光譜影像中尋找銀合歡與其他植物間之差異,進而分類判釋銀合歡在恆春地區的覆蓋範圍。
本研究成果顯示,區段式PCA光譜轉換較能有效萃取出恆春地區銀合歡與其他植物之差異,分類成果較PCA佳。
Invasive species usually cause enormous ecological and environmental impacts and alter the ecological balance. In Heng-Chun area of southern Taiwan, Leucaena from South America spreads rapidly because of past human decisions and its flourishing adaptability. In order to make this problem under control and to develop strategies to maintain or restore local bio-diversity, it is necessary to understand the current status of Leucaena spreading.
Traditionally, detecting invasive plants relies heavily on field investigations or human interpretations of aerial photos or satellite images. It is time-consuming and the result might not be reliable. On the other hand, the results of using automatic classification are often limited by multispectral data because there is not enough information for detecting specific plant in the limited spectral bands. To overcome this limitation, hyperspectral remote sensing data may be of more help.
Hyperspectral remote sensing images provide more complete and detailed spectral information about ground coverage and have a great potential to the identification of specific plant species in vegetation covered areas. However the high data dimensionality of hyperspectral data can cause substantial impact to its applications. Principal component analysis is a common technique used for feature reduction in remote sensing image analysis, but it may overlook subtle but useful information. This research developed a segmented principal component analysis scheme that can be used not only to reduce the dimensionality of a hyperspectral image but also to extract critical spectral features helpful in discriminating different vegetation types.
The analysis results of this research demonstrated that segmented principal component analysis performed better than regular PCA in providing critical information for distinguishing the target plant species from other vegetation types.
顏仁德,2000。中華民國自然生態保育協會(SWAN)「2000生物多樣性保育展望」會議。
賴明洲,1995。最新台灣園林觀賞植物名錄。地景企業股份有限公司 台灣台北 378頁。
陳德順、胡大維,1976。台灣外來觀賞植物名錄。川流出版社 台灣台北 618頁。
蔣慕琰、徐玲明等,2003。台灣外來植物之危害與生態,小花蔓澤蘭危害與管理研討會專刊 97~109頁
高瑞卿、洪聖峰,2001。台北植物園水生植物池外來種生物危害之問題與維護研究,農政與農情第107期。
郭麟霂,2000。寒帶沼地高光譜影像分類之研究,國立交通大學土木工程學系碩士論文。
浦瑞良與宮鵬,2002。高光譜遙測及其應用。五南圖書出版股份有限公司 台北
王儷蓉,1998。高光譜資料之差異與類別分離度分析,國立成功大學測量工程研究所碩士論文。
呂福原、陳民安,2002。墾丁國家公園外來種植物對原生植物群之影響以銀合歡為例,保育研究報告第112號。
陳朝圳,2003。劣化生態系復育-外來樹種入侵對生態系之影響(銀合歡入侵調查),行政院農委會林務局委託研究計畫系列。
林金樹,2002。高光譜主軸轉換影像辨識土地利用型最適主軸數決定法之研究,臺灣林業科學 17(4) 第471-481頁。
Bell, I.E., G.V.G.Baranoski, 2004. “Reducing the Dimensionality of Plant Spectral Databases”. IEEE Transactions on Geoscience and Remote Sensing, vol.42, pp.570-576.
Broge, N.H., E.Leblanc, 2000. “Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density”. Remote Sensing of Environment, vol.76 , pp. 156-172 .
Cheriyadat, A., L.M.Bruce, 2004. “Why Principal Component Analysis is not an Appropriate Feature Extraction Method for Hyperspectral Data”. Proc. IEEE Conference on Geoscience and Remote Sensing (IGARSS), pp.3420-3422
Clark, R.N., 1999. Spectroscopy of Rocks and Minerals, and Principles of Spectroscopy, in Manual of Remote Sensing. New York:John Wiley and Sons, Inc.
Devlin, R.M., A.V.Barker, 1971.Photosynthesis. New Tork:Van Nostrand Reinhold.
Gupta, R.K., D.Vijayan, 2001. “New hyperspectral vegetation characterization parameters”. Adv. Space Res., vol.28 , pp. 201-206 .
Hsieh, S.J., D.A.Landgrebe, 1998. Classification of High Dimensional Data. Phd Thesis, Purdue University.
Jacquemoud, s., F.Baret, 1990.“A Model of Leaf Optical Properties Spectra”. Remote Sensing of Environment, vol.34, pp. 75-92.
Jia, X.P., J.A. Richards, 1999. “Segmented Principal Components Transformation for Efficient Hyperspectral Remote Sensing Image Display and Classification”. IEEE Transactions on Geoscience and Remote Sensing, vol.37, pp. 538-542.
McGwire, K., T.Minor, 2000. “Hyperspectral mixture modeling for quantifying sparse vegetation cover in arid environments”. Remote Sensing of Environment, vol.72, pp. 360-374.
Sandmeier, S., D.W.Deering, 1999. “Structure analysis and classification of boreal forests using airborne hyperspectral BRDF data from ASAS”. Remote Sensing of Environment, vol.69, pp. 281-295.
Schowengerdt, R.A., 1997. Remote sensing-models and methods for image processing. 2nd ed. New York: Academic Press.
Serrano, L., S.L.Ustin, 2000. “Deriving water content of chaparral vegetation from AVIRIS data”. Remote Sensing of Environment, vol.74, pp. 570-581.
Tucker, C.J., M.W. Garrat, 1977. “Leaf Optical System Modeled as a Stochastic Process”. Appl. Opt., vol.16, no.3, pp. 635-642.
Underwood, E., S.Ustin, D.DiPietro, 2003.“Mapping nonnative plants using hyperspectral imagery”. Remote Sensing of Environment, vol.86, pp. 150-161.
Williams, A.P., E.R.Hunt Jr, 2002. “Estimation of leafy spurge cover from hyperspectral imagery using mixture tuned matched filtering”. Remote Sensing of Environment, vol.82, pp. 446-456.
Zarco-Tejada, P.J., J.R.Miller, 2004.“ Needle chlorophyll content estimation through model inversion using hyperspectral data from boreal conifer forest canopies”. Remote Sensing of Environment, vol.89, pp. 189-199.