| 研究生: |
游程盛 Cheng-Sheng Yu |
|---|---|
| 論文名稱: |
從基因跟致病因子的比較去探討疾病的關聯與共病性 Comparison of the disease-disease correlation and comorbidity with the genes and risk factors |
| 指導教授: |
洪炯宗
Jorng-Tzong Horng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 資訊工程學系 Department of Computer Science & Information Engineering |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 32 |
| 中文關鍵詞: | 疾病與基因 、疾病共病性 |
| 外文關鍵詞: | disease correaltion, comorbidity |
| 相關次數: | 點閱:5 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
網絡是一種用來表示不同目標之間彼此關係的好方法,許多關於基因、蛋白質等各種與疾病相關的媒介與機轉,都可以透過網絡的方式來表示彼此之間的關連性。最近五年來,在公共衛生與醫療上,有許多應用網絡圖的方法來研究與呈現疾病與致命因子之間的影響。然而,我們利用衛生署健保局的醫療資訊與OMIM(Online Mendelian Inheritance in Man)上顯示有共同致病基因的疾病作配對,運用數學統計的方法以及網絡分析的技術建立一個疾病網路圖,藉由這些方法和資訊去探究基因與環境因子在現今流行病學上的影響程度。由最後的結果可以發現,在台灣社會裡,基因和其他致病因子如:年齡、性別、地區等,在疾病之間的發生率與誘導伴隨其他疾病的影響力,其他環境因子也是比較重要的關鍵角色。透過網路圖來分析疾病與致病因子的關係強弱,期許能對於研究疾病相關資訊和國人健康指標有助益。
A disease network has been developed in recent years. It is linked by genes and protein-protein interaction to show the relation between them and diseases. But there are still many unknown factors that have play an important role in disorders and epidemiology. We investigate the correlation between different popular diseases known by share genes on OMIM(Online Mendelian Inheritance in Man) and other risk factors such like sex and age. The chronic diseases such high blood pressure, osteoarthritis and cancers have a lot of other risk factors that affect people’s health, not just involved by genes. We not only check the diseases induced by genes from OMIM but also want to find whether the risk factors which have impacts on those diseases play a more important role in epidemiology. Maybe there are some diseases we have not found the correlation between each other. We attempt to construct a disease-disease network in a new relation and detect what doesn’t find between the diseases and human in epidemiology in Taiwan.
References
1. Yildirim MA, Goh KI, Cusick ME, Barabási AL, Vidal M. Drug-target network. Nat Biotechnol. 2007 Oct;25(10):1110-1.
2. Goh K-I, Cusick ME, Valle D, Childs B, Vidal M, Barabási A-L. The human disease network. Proc Natl Acad Sci USA 2007;104:8685-8690.
3. Park J, Lee DS, Christakis NA, Barabási AL. The impact of cellular networks on disease comorbidity. Mol Syst Biol. 2009;5:262. Epub 2009 Apr 7.
4. Hidalgo CA, Blumm N, Barabási AL, Christakis NA. A dynamic network approach for the study of human phenotypes. PLoS Comput Biol. 2009 Apr;5(4):e1000353. Epub 2009 Apr 10.
5. Loscalzo J, Kohane I, Barabasi AL. Human disease classification in the postgenomic era: a complex systems approach to human pathobiology. Mol Syst Biol. 2007;3:124. Epub 2007 Jul 10.
6. Lee DS, Park J, Kay KA, Christakis NA, Oltvai ZN, Barabási AL. The implications of human metabolic network topology for disease comorbidity. Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):9880-5. Epub 2008 Jul 3.
7. Bernard Rosner. Feb. (2005) Fundamentals of Biostatistics, 6th Edition. Duxbury Press. ISBN: 0534418201.
8. Robert V. Hogg, Joseph W. McKean, Allen T. Craig. (2005) Introduction to Mathematical Statistics, 6th Edition. ISBN: 0131226053.
9. Prem S. Mann. (2005) Introductory Statistics: Using Technology, 5th Ed. John Wiley & Sons. ISBN: 0471473243.
10. Pasternak JJ. (2005) An Introduction to Human Molecular Genetics (Wiley, Hoboken, NJ), 2nd Ed.
11. Imming, P., Sinning, C. & Meyer, A. Drugs, their targets and the nature and number of drug targets. Nat. Rev. Drug Discov. 5, 821–834 (2006).
12. Jimenez-Sanchez, G., Childs, B. & Valle, D. Human disease genes. Nature 409, 853–855 (2001).
13. Mencher, S.K. & Wang, L.G. Promiscuous drugs compared to selective drugs (promiscuity can be a virtue). BMC Clin. Pharmacol. 5, 3 (2005).
14. Newman, M.E. Scientific collaboration networks. I. Network construction and fundamental results. Phys. Rev. E 64, 016131 (2001).
15. Stelzl, U. et al. A human protein-protein interaction network: a resource for annotating the proteome. Cell 122, 957–968 (2005).
16. Almaas E (2007) Biological impacts and context of network biology. J Exp Biol 210: 1548–1558.
17. Alon U (2007) Network motifs: theory and experimental approaches. Nat Rev Gen 8: 450–461.
18. Braun P, Rietman E, Vidal M (2008) Networking metabolites and diseases. Proc Natl Acad Sci 105: 9849–9850.
19. Bursi F, Rocca WA, Kilian JM, Weston SA, Knopman DS, Jacobsen SJ, Roger VL (2006) Heart disease and dementia: a population-based study. Am J Epidemiol 163: 135–141.
20. Efron B (1979) Computers and the theory of statistics: thinking the unthinkable. SIAM Rev 21: 460–480.
21. Ergun A, Lawrence CA, Kohanski MA, Brennan TA, Collins JJ (2007) A network biology approach to prostate cancer. Mol Syst Biol 3: 82.