| 研究生: |
趙恆億 Hen-Yi Chao |
|---|---|
| 論文名稱: |
酵母菌 alanyl-tRNA synthetase 的細胞內傳輸機制 The transport mechanism of alanyl-tRNA synthetase in Saccharomyces cerevisiae |
| 指導教授: |
王健家
Chien-Chia Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 生命科學系 Department of Life Science |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 傳輸機制 |
| 外文關鍵詞: | alanyl-tRNA synthetase |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
真核生物除了細胞質,粒線體也會進行蛋白質的合成,因此在細胞體內必須要有兩套不同的蛋白質合成酵素。ALA1基因是酵母菌(Saccharomyces cerevisiae)中唯一的alanyl-tRNA synthetase (AlaRS)基因,此基因可同時轉譯出兩種AlaRS異構型,分別作用在細胞質及粒線體內。它是利用最靠近5,端的ATG1 轉譯出細胞質的異構型,利用ATG1上游的二個重複ACG (即ACG-25和ACG-24) 作出粒線體異構型。本研究則是著重在進一步探討粒線體AlaRS的細胞內傳輸機制及功能。藉由功能性互補實驗、點突變、及西方式點墨法的測試,我們發現AlaRS的標的訊號不只包括Met1 上游的前序列,尚含括了Met1 下游的18個胺基酸。只有前序列或胺基端18個胺基酸只能將部份AlaRS運送到粒線體內作用,其餘的則殘留在細胞質內。此外,西方點墨法的實驗顯示粒線體AlaRS的基質蛋白質酶切割位似乎不是如PSORTII預測位於Asn16及Thr17之間,而更可能位在上游的序列上。另外在別種低等真核酵母菌: 如C. albicans中我們也發現了其利用唯一的ALA1基因轉譯出細胞質和粒線體的AlaRS蛋白質的例子,同時更確定C. albicans的AlaRS 可以互補於S. cerevisiae AlaRS的生理活性,因此找出其粒線體標的訊號的所在及探討對蛋白質的傳輸影響是接下來重要的課題。總結我們的實驗結果,S. cerevisiae AlaRS的功能除了取決於蛋白質表現量多寡之外,也受到其標的訊號的強弱影響。
In eukaryotic cells, protein synthesis occurs not only in the cytoplasm but also in the mitochondria, so cells need to have more than one set of this enzyme for function in different organelles. It was recently shown that ALA1 is the only gene in Saccharomyces cerevisiae coding for alanyl-tRNA synthetase (AlaRS). ALA1 was found to encode both cytoplasmic and mitochondrial isoforms of AlaRS. The former is translationally initiated at the first ATG codon (designated ATG1) at the 5’-end of its open reading frame, while the latter is initiated from upstream in-frame redundant non-ATG codons (i. e., ACG-25 and ACG-24). In this thesis, we focused on the transport mechanism and physiological function of mitochondrial AlaRS. The results of functional tests, site directed mutagenesis, and Western blotting all suggest that the mitochondrial targeting signal of ALA1 includes not only the upstream presequence but also the first eighteen amino acids downstream of Met1 (from codons ACG-25 to TTT+18). When only the presequence or first 18 amino acids of the cytoplasmic N-terminus is used to test for mitochondrial targeting activity, only a portion of the protein products were transported into mitochondria, while the rest remained in the cytoplasm. In addition, the results of Western blotting also reveal that the mitochondrial matrix processing peptidase cutting site may not be between Asn16 and Thr17 as previously predicted by PSORTII, but is rather located at sequences further upstream. In addition, we have also demonstrated that the low eukaryote Candida albicans also uses a single ALA1 gene to encode both cytoplasmic and mitochondrial AlaRS isoforms, and the protein product of this gene has complementing activity in Saccharomyces cerevisiae. Thus finding the mitochondrial targeting signal of this protein and elucidating its effects on protein transport is the next major step of this project. In conclusion, the activity of AlaRS is dependent on both the amount of protein synthesized and the strength of the mitochondrial targeting signal.
Abramczyk, D., Tchorzewski, M., Grankowski, N. (2003) Non-AUG translation initiation of mRNA encoding acidic ribosomal P2A protein in Candida albicans. Yeast 12: 1045-1052
Carter, C. W. Jr. (1993) Cognition, mechanism, and evolutionary relationships in aminoacyl-tRNA synthetases. Annu. Rev. Biochem. 62: 715-748
Chang, K. J., and Wang, C. C. (2004) Translation initiation from a naturally occurring non-AUG codon in Saccharomyces cerevisiae. J. Biol. Chem. 279: 13778-13785
Chatton, B., Walter, P., Ebel, J. P., Lacroute, F., and Fasiolo, F. (1988) The yeast VAS1 gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases. J. Biol. Chem. 263: 52-57.
Clements, J. M., Laz, T. M., and Sherman, F. (1988) Efficiency of translation initiation by non-AUG codons in Saccharomyces cerevisiae. Mol. Cell. Biol. 8: 4533-4536.
Felter, S., Diatewa, M., Schneider, C., and Stahl, A. J. (1981) Yeast mitochondrial and cytoplasmic valyl-tRNA synthetases. Biochem. Biophys. Res. Commun. 98: 727-734.
Giegé, R., Sissler, M., and Florentz, C. (1998) Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res. 26: 5017-5035
Imataka, H., Olsen, H. S., and Sonenberg, N. (1997) A new translational regulator with homology to eukaryotic translation initiation factor 4G. EMBO J. 16: 817-825
Kozak, M. (1989) Context effects and inefficient initiation at non-AUG codons in eukaryotic cell-free translation systems. Mol. Cell. Biol. 9: 5073-5080.
Kozak, M. (1990) Downstream secondary structure facilitates recognition of initiator codons by eukaryotic ribosomes. Proc. Natl. Acad. Sci. USA 87: 8301-8305
Kozak, M. (1991) An analysis of vertebrate mRNA sequences: intimationsof translational control. J. Cell Biol. 115: 887–903.
Kozak, M. (1991) Structural features in eukaryotic mRNAs that modulate the initiation of translation. J. Biol. Chem. 266: 19867-19870.
Kozak, M. (1997) Recognition of AUG and alternative initiator codons is augmented by G in position +4 but is not generally affected by the nucleotides in positions +5 and +6. EMBO J 16(9):2482-92
Kozak, M. (1999) Initiation of translation in prokaryotes and eukaryotes. Gene 234: 187-208
Maréchal-Drouard, L., Weil, J. H., and Dietrich, A. (1993) Transfer RNAs and transfer RNA genes in plants. Annu. Rev. Cell. Biol. 8: 115-131.
Mireau, H., Lancelin, D., and Small, I. D. (1996) The same Arabidopsis gene encodes both cytosolic and mitochondrial alanyl-tRNA synthetases. The Plant Cell 8: 1027-1039
Nakai, K. and Horton, P. (1999) PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization Trends Biochem. Sci. 24: 34-36
Natsoulis, G., Hilger, F., and Fink, G. R. (1986) The HTS1 gene encodes both the cytoplasmic and mitochondrial histidine tRNA synthetases of S. cerevisiae. Cell 46: 235-243.
Nett, J. H., Kessl, J., Wenz, T., and Trumpower, B. L. (2001) The AUG start codon of the Saccharomyces cerevisiae NFS1 gene can be substituted for by UUG without increased initiation of translation at downstream codons. Eur. J. Biochem. 268: 5209-5214
Ripmaster, T. L., Shiba, K., and Schimmel, P. (1995) Wide cross-species aminoacyl-tRNA synthetase replacement in vivo: yeast cytoplasmic alanine enzyme replaced by human polymyositis serum antigen. Proc. Natl. Acad. Sci. USA 92: 4932-4936
Sass, E., Blachinsky, E., Karniely, S., and Pines, O. (2001) Mitochondrial and cytosolic isoforms of yeast fumarase are derivatives of a single translation product and have identical amino termini. J. Biol. Chem. 276: 46111-46117
Sass, E., Karniely, S., and Pines, O. (2003) Folding of fumarase during mitochondrial import determines its dual targeting in yeast. J. Biol. Chem. 278: 45109-45116
Shastri, N., Nguyen, V., and Gonzalez, F. (1995) Major histocompatibility class I molecules can present cryptic translation products to T-cells. J. Biol. Chem. 270: 1088-1091
Sikorski, R. S. and Hieter, P. (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19-27
Souciet, G., Menand, B., Ovesna, J., Cosset, A., Dietrich, A., and Wintz, H. (1999) Characterization of two bifunctional Arabdopsis thaliana genes coding for mitochondrial and cytosolic forms of valyl-tRNA synthetase and threonyl-tRNA synthetase by alternative use of two in-frame AUGs. Eur. J. Biochem. 266: 848-854.
Wang C. C., Morales A. J., and Schimmel P. (2000) Functional redundancy in the nonspecific RNA binding domain of a class I tRNA synthetase. J. Biol. Chem. 22: 17180-17186
Yoon, H. and Donahue, T. F. (1992) Control of translation initiation in Saccharomyces cerevisiae. Mol. Biol. 6: 1413-1419
唐蕙苓 ( 2002 ) 酵母菌轉譯起始機制的研究。中央大學碩士論文。
張光容 ( 2003 ) 酵母菌GRS1基因的轉譯起始機制之研究。中央大學碩士論文
葉蟬嫻 ( 2003 ) 探討酵母菌ALA1基因的non-AUG轉譯機制。中央大學碩士論文。