| 研究生: |
陳湛圖 Chen Chan tu |
|---|---|
| 論文名稱: |
高維度終端加權投影空間之研究 A SURVEY ON CLASSIFYING HIGHER DIMENSIONAL TERMINAL AND CANONICAL WEIGHTED PROJECTIVE SPACE |
| 指導教授: |
陳正傑
Chen,Jheng-Jie |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 46 |
| 中文關鍵詞: | 經典奇點 |
| 外文關鍵詞: | Fano, canonical, terminal |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
這篇論文主要探討如何分類具有終端或經典奇點的加權投影空間。一開始先分
類四面體然後根據四面體的結果來分類最小多胞形和最大多胞形。最後分類所
有的三維 Fano 多胞形。我們之後可以引申出在一般維度的結果並應用在四維帶有經典和終端奇點的 Fano 多胞形。
In this paper, I would offer a detail explanation of ALEXANDER M. KASPRZYK’s paper toricfano three-folds with terminal singularities and Classifying terminal weighted projective space.
[Kas06a] Alexander M. Kasprzyk, Toric Fano threefolds with terminal singularities, Tohoku Math.
J. (2) 58 (2006), no. 1, 101–121.
[Kas09] Alexander M. Kasprzyk, Bounds on fake weighted projective space, Kodai Math. J. 32 32
(2009), 197–208.
[Kas13] Alexander M. Kasprzyk, Classifying terminal weighted projective space .(arXiv:1304.3029)
[NI05] Benjamin Nill, Gorenstein toric Fano varieties.(https://d-nb.info/976200414/34)
[Cox09] David Cox, John Little, and Hal Schenck, Toric Varieties.
[Cox10] David Cox, John Little, and Hal Schenck, Toric Varieties.
[Hart] Robin Hartshorne, Algebraic Geometry . Toric varieties by Cox 32 (2009), 197–208.
[Sca85] H. E. SCARF, Integral polyhedra in three space. Math. Oper. Res. 10 (1985), 403–438.
[Wip] https://en.wikipedia.org/wiki/Pick%27s_theorem
[Mat02] Kenji Matsuki, Introduction to the Mori program, Universitext, SpringerVerlag, New York,
(2002).
[Ful93] Kenji Matsuki, Introduction to Toric Varieties, Annals of Mathematics Studies 131 (1993).
Princeton University Press.
[YPG] Miles Reid, Young person’s guide to canonical singularities.