| 研究生: |
胡紘耀 Hung-Yao Hu |
|---|---|
| 論文名稱: |
滲流現象及水砂條件對沖積扇堆積型態之影響 The effect of sediment concentration and seepage on the formation alluvial fans |
| 指導教授: |
周憲德
Hsien-Ter Chou |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 沖積扇 、水砂比 、渠道化 、滲流 、水砂分離 |
| 外文關鍵詞: | alluvial fan,, seepage flow and water-sand separation |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以實驗探討水流條件及滲流對沖積扇堆積型態之影響。實驗分為兩個部分,第一部分為沖積扇的堆積與形成過程;第二部分為乾沖積扇的滲流及破壞過程。第一部分實驗討論顆粒濃度對堆積型態及堆積歷程的影響。泥沙以恆定的供給率自儲存桶倉釋放,於輸送管內與定流量的水混合,並排入邊壁夾90度且底床水平的平台。第二部分討論在沖積扇張開90度,且無地表逕流的情形下,供水量與滲流高度的關係。先在平台堆放乾沖積扇,於扇頂處供應定流量的水,再透過嵌於邊壁玻璃管觀察各個徑向距離的水頭高。從實驗現象中發現,當顆粒的滲透係數太大時,滲流量將會影響堆積型態。當滲流量到達臨界值後造成顆粒孔隙不飽和,並使扇面留下皺褶,稱為「水砂分離」。決定「水砂分離」模式的關鍵在於水流的驅動力,而「水砂比(n)」以及「水流量(Q_s)」即是重要的參數。
The effect of sediment concentration and seepage on the formation of alluvial fans is experimentally explored in this study. Both the sediment and water are constantly supplied and mixed prior to being discharged into a platform with a horizontal angle of 90°. Firstly, the formation of alluvial fans with different sediment (coarse sand) concentrations and water discharges is examined. Secondly, the seepage-induced deposition and channel avulsion are observed on the fan surfaces during the evolution of the fan. As the fan apex grows to certain height, the downward seepage reduces the surface runoff on the fan surface. Consequently, the lobes or wrinkles rings appear on the fan surface and the fan slope abruptly increases. The sediment only accumulated at the unsaturated upper part of the fan, while the lower part of the fan remained steady and saturated. The key parameters controlling the fan slope are the sediment concentration, water discharge and the sediment characteristics (i.e., size and porosity).
[1] 賴勁愷 (2018),「顆粒及水流條件對沖積扇坡度及堆積型態之影響」,碩士論文,國立中央大學土木工程研究所,中壢。
[2] 王俊凱 (2017),「不同水砂比之顆粒流對於渠道回淤及沖積扇堆積型態之影響」,碩士論文,國立中央大學土木工程研究所,中壢。
[3] 陳瑞遠 (2016),「不同水砂比及渠道坡度對沖積扇型態之影響」,碩士論文,國立中央大學土木工程研究所,中壢。
[4] 吳侑謙 (2015),「顆粒特性及水流條件對顆粒體運動及淤積型態之實驗研究」,碩士論文,國立中央大學土木工程研究所,中壢。
[5] 曾文毅 (2014),「不同輸砂濃度及基準水面條件下之沖積扇形態分析」,碩士論文,國立中央大學土木工程研究所,中壢。
[6] 鐘敦倫,謝洪 (2014),「泥石流災害及防治技術」,四川科學技術出版社,中國四川。
[7] 吳俊銓 (2012),「山洪濁流形成沖積扇之實驗研究」,碩士論文,國立中央大學土木工程研究所,中壢。
[8] 王景平 (2005),「松鶴地區土石流災害歷史之探討」,中華水土保持學報,36(2): 203-213 。
[9] 詹錢登 (2000),「土石流概論」,科技圖書股份有限公司,台北。
[10] 蔡元芳 (1999),「土石流扇狀地形狀特性之研究」,碩士論文,國
立成功大學水利及海洋工程研究所,台南。
[11] Banteah R. (2010), “Fluvial form in modern continental sedimentary basins: distributive fluvial systems.”, Geology 38 (1), 39–42.
[12] Beaty C.B. (1963), “Origin of alluvial fans, White Mountains, California and Nevada.” Ann. Assoc. Am. Geogr., 53, 516–535.
[13] Bull W. B. (1964), “Geomorphology of segmented alluvial fans in Western Fresno County, California”, Tech. Rep.
[14] Blair T.C., McPherson J.G. (2009), “Processes and forms of alluvial fans.” In: Parsons, A., Abrahams, A. (Eds.), Geomorphology of Desert Environments. Springer, Netherlands, pp. 413–467.
[15] Blair T.C. (2002), “Alluvial-fan sedimentation from a glacial-outburst flood, Lone Pine, California, and contrasts with meteorological flood deposits.” Flood and Megaflood Processes and Deposits: Recent and Ancient Examples. IAS Special Publication, pp. 113–140.
[16] Blair T.C., McPherson J.G. (1998). “Recentdebris-flowprocessesand resultant formand facies of the Dolomite alluvial fan, Owens Valley, California.” J. Sediment. Res. 68 (5), 800–818.
[17] Blair T.C., McPherson J.G. (1994), “Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes and facies assemblages.” J. Sediment. Res. A64, 450–489.
[18] Blikra L.H., Nemec W. (1998), “Postglacial colluvium in western Norway: depositional processes, facies and palaeoclimatic record.” Sedimentology 45 (5), 909–960.
[19] Blissenbach E. (1954), “Geology of alluvial fans in semiarid regions.” Geol. Soc. Am. Bull., 65, 175–190.
[20] Clarke L. (2015), “Experimental alluvial fans: Advances in understanding of fan dynamics and processes” Geomorphology 244 135–145.
[21] Clarke L., Quine T.A., Nicholas A. (2010), “An experimental investigation of autogenic behaviour during alluvial fan evolution.” Geomorphology 115 278–285.
[22] Davies T.R., McSaveney M.J., Clarkson P.J. (2003), “Anthropic aggradation of the Waiho River, Westland, New Zealand: microscale modelling.” Earth Surf. Process. Landf. 28, 209–218.
[23] De Haas T., Woerkom T.V. (2016) , “Bed scour by debris flows: experimental investigation of effects of debris-flow composition”, Earth Surface Processes and Landforms, 10.1002/esp.3963.
[24] de Haas T., Ventra D., Carbonneau P.E., Kleinhans M.G. (2014), “Debris-flow dominance of alluvial fans masked by runoff reworking and weathering” Geomorphology217 165–181.
[25] Gómez-Villar A., García-Ruiz J. (2000). “Surface sediment characteristics and present dynamics in alluvial fans of the central Spanish Pyrenees.” Geomorphology 34 (34), 127–144.
[26] Guerit L., M´etivier F., Devauchelle O., Lajeunesse E., Barrier L. (2014), “Laboratory alluvial fans in one dimension” Physical Reciew E 90 022203.
[27] Hamilton P. B., Strom K., Hoyal D. C. J. D. (2013), “Autogenic incision-backfilling cycles and lobe formation during the growth of alluvial fans with supercritical distributaries” the journal of the International Association of Sedimentologists, Sedimentology 60, 1498–1525.
[28] Hartley A.J., Weissmann G.S., Nichols G.J., Warwick G.L. (2010), “Large distributive fluvial systems: characteristics, distribution, and controls on development.” J. Sediment. Res. 80 (2), 167–183.
[29] Hooke R., Rohrer W.L. (1979), “Geometry of alluvial fans: effect on discharge and sediment size.” Earth Surf. Process. Landf. 4, 147–166.
[30] Hooke R. (1968). “Model geology: prototype and laboratory streams: discussion.” Geol. Soc. Am. Bull. 79, 391–394.
[31] Hooke R. (1967), “Processes on arid region alluvial fans.” J. Geol. 75, 438–460.
[32] Johnson A.M. (1984), “Debris flow.” Slope instability, D. Brunsden and D. B. Prior, eds., John Wiley & Sons, Ltd., Chichester, England, 257-361.
[33] Nicholas A. P., Clarke L., Quine T. A. (2009), “A numerical modelling and experimental study of flow width dynamics on alluvial fans” Earth Surf. Process. Landforms 34, 1985–1993.
[34] Parker G. (1999), “Progress in the Modeling of Alluvial Fans.” Journal of Hydraulic Research 37, 805-825.
[35] Parker G., Paola C., Whipple K. X., Mohrig D. (1998), “Alluvial fans formwd by channelized fluvial and sheet flow.” Journal of hydraulic engineering / October.
[36] Schumm S. A. (1977), “The fluvial system.”, John Wiley & Sons, Inc., New York, N.Y.
[37] Suwa H., and Okuda S. (1983), “Deposition of debris flows on a fan surface, Mt. Yakedake, Japan.” Zeit. Geomorph. N. F., 46, 79-101.
[38] Volker H., Wasklewicz T., Ellis M. (2007), “A topographic fingerprint to distinguish alluvial fan formative processes.” Geomorphology 88 (12), 34–45.
[39] Whipple K. X., Parker G., Paola C., Mohrig D. (1998), “Channel Dynamics, Sediment Transport, and the Slope of Alluvial Fans: Experimental Study”, The Journal of Geology, 1998, volume 106, p. 677–693.
[40] Whipple, K. X., and Dunne, T. (1992), "The influence of debris-flow rheology on fan morphology, Owens Valley, California." Geol. Soc. Am. Bull., 104,887-900.
[41] Weissmann G. ,Hartley A., Nichols G., Scuderi L., Olson M., Buehler H., Banteah R. (2010), “Fluvial form in modern continental sedimentary basins: distributive fluvial systems.” Geology 38 (1), 39–42.