跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳思潔
Szu-Chieh Wu
論文名稱: 缺陷指數為1的矩陣之研究
A Study on Matrices of Defect Index One
指導教授: 高華隆
Hwa-Long Gau
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
畢業學年度: 96
語文別: 英文
論文頁數: 31
中文關鍵詞: 數值域缺陷指數極分解
外文關鍵詞: polar decomposition, numerical range, defect index
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • ㄧ個n階矩陣A其缺陷指數為$rank(I_n-A^ast A)$。本論文探討關於「缺陷指數為1的矩陣」其性質之刻劃。令$mathcal{S}_n ≡ {A in M_n: rank(I_n-A^ast A)=1 and |lambda|<1 for all lambda in sigma(A)}$和 $mathcal{S}_n^{-1} ≡ {A in M_n: rank(I_n-A^ast A)=1 and |lambda|>1 for all lambda in sigma(A)}$。首先我們發現這兩類矩陣皆為具有缺陷指數為1之基本矩陣,進一步而言,我們證明一矩陣其缺陷指數為1之充分必要條件為它可分解成一個么正矩陣和一個$mathcal{S}_n$ 矩陣的直和或是一個么正矩陣和一個$mathcal{S}_n^{-1}$矩陣的直和。此外,我們也針對$mathcal{S}_n^{-1}$矩陣給一個完整的刻劃以及它們的極分解。亦證明每一個$mathcal{S}_n^{-1}$ 矩陣均具有循環、不可分解、且其數值域之邊界為一代數曲線。並給出$mathcal{S}_n^{-1}$ 矩陣的範數其由特徵值所表示。


    Given an $n$-by-$n$ matrix $A$, the dimension of $ran(I_n-A^ast A)$ is called the defect index of $A$. In this thesis, we make a detailed study of matrices $A$ with the property $rank(I_n-A^ast A)=1$. Let $mathcal{S}_n equiv {A in M_n: rank(I_n-A^ast A)=1: and |lambda|<1 for all lambda in sigma(A)}$ and $mathcal{S}_n^{-1} equiv {A in M_n: rank(I_n-A^ast A)=1 and |lambda|>1 for all lambda in sigma(A)}$. Firstly, we give a complete characterization for matrices of defect index one, namely, $rank(I_n-A^ast A)=1$ if and only if $A$ is unitarily equivalent to either $U oplus B$ or $U oplus C$, where $U$ is a $k times k$ unitary matrix, $0 leq k< n$, $B in mathcal{S}_{n-k}^{-1}$ and $C in mathcal{S}_{n-k}$. Moreover, we also give a complete characterization of $mathcal{S}_n^{-1}$-matrices. We find the polar decompositions of $mathcal{S}_n^{-1}$-matrices. Next, we prove that every $mathcal{S}_n^{-1}$-matrix is irreducible, cyclic, and the boundary of its numerical range is an algebraic curve. Finally, we give the
    norm of $mathcal{S}_n^{-1}$-matrices in terms of its eigenvalues.

    1. Introduction ..........................................1 2. Preliminaries .........................................2 2.1 Basic Properties of Numerical Range...................2 2.2 Matrices of Defect Index One..........................3 2.3 Matrices of Classes $S_n$ and $S_n^{-1}$..............3 2.4 Polar Decompositions of $S_n$-Matrices ...............4 3. Main Results...........................................5 3.1 Classifications of Matrices of Defect Index One.......5 3.2 Polar Decompositions of $S_n^{-1}$-Matrices...........8 3.3 Matrix Representations for Operators in $S_n^{-1}$...12 3.4 Numerical Ranges of $S_n^{-1}-Matrices...............17 3.5 Norm of $S_n^{-1}$ -Matrices.........................29 • References ............................................31

    [1] R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985.
    [2] R.A. Horn and C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991.
    [3] D.S.Keeler, L. Rodman and I.M. Spitkovsky, The Numerical Range of 3×3 Matrices, Linear Algebra and its Appl., 252 (1997), 115–139.
    [4] H.-L. Gau and P. Y. Wu, Numerical Range of S(ψ), Linear and Multilinear Algebra, 45 (1998), 49–73.
    [5] H.-L. Gau and P. Y. Wu, Lucas’ Theorem Refined, Linear and Multilinear Algebra, 45 (1999), 359–373.
    [6] H.-L. Gau and P. Y. Wu, Companion Matrices: Reducibility, Numerical Ranges and Similarity to Contractions, Linear Algebra and its Appl., 383 (2004),127–142.
    [7] H.-L. Gau and P. Y. Wu, Numerical Range of a Normal Compression, Linear and Multilinear Algebra, 52 (2004), 195–201.
    [8] P. Y. Wu, Polar Decompositions of C0(N) contractions, Integral Equations Operator Theory, 56 (2006), 559–569.
    [9] M.-S. Sun, A Study on Reducible Companion Matrices, Master Thesis, June 2006, National Central University, Taiwan.

    QR CODE
    :::