| 研究生: |
彭心平 Xin-ping peng |
|---|---|
| 論文名稱: |
金(100)表面修飾氰化鉀吸附與蝕刻行為及電化學檢測多巴胺 |
| 指導教授: |
姚學麟
Shueh-Lin Yau |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | STM 、氰化鉀 、多巴胺檢測 |
| 外文關鍵詞: | STM, KCN, Dopamine |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在0.1 M硫酸中,使用掃描隧道顯微鏡(STM)研究Au(100)電極上的氰化離子(CN-)吸附。Au(100)電極在 -0.2 V時呈現”hex”重構結構,加入KCN後轉變為(1 × 1)相,這一轉變通過即時原位STM成像揭示。關於這個相變的細節已經被揭示出來,在正電位時,CN 氧化吸附於金電極上,生成AuCNad,然後發生陽極蝕刻,形成葉狀表面形態,在負電位下形成線狀特徵和迷宮狀結構。這些特徵在pH 7的KCN溶液中也被觀察到。在正電位下,Au(100)表面溶解,形成淺凹陷(~3 nm)。這個蝕刻過程足夠緩慢,以至於可以使用STM來跟踪這一過程。
在0.1 M 過氯酸鉀(KClO4)中,CN的吸附導致Au(100)表面向fcc(210)結構重構,為CN創造了一個更穩定的六重配位環境。在正電位下,可以區分出兩個氧化步驟,O1和O2,其反應過程分別為AuCN-ad → AuCNad + e-,以及連續反應AuCNad + CN- → Au(CN)2-和Au (exposed) + CN- → AuCNad + e-。第一個反應導致了一個從有序(2 × 2)結構到無序的轉變。在第二個過程中,觀察到Au(100)的蝕刻。
在pH 7的KClO4中,CN的吸附可以在Au(100)電極上形成凹槽,這些表面特徵可以作為模板,可用於沉積外來金屬(如銅)以製備Cu-Au表面合金。KCN的吸附和隨後的蝕刻過程高度依賴於KCN的濃度和pH值。在更鹼性的溶液中,隨著KCN濃度的增加,金電極的溶解速率會加快。
使用有序的Au(100)電極在0.1 M硫酸中進行了多巴胺的電化學檢測,在含有1 mM抗壞血酸(AA)和1 µM多巴胺的溶液中,透過循環伏安法實驗觀察到了多巴胺的氧化,在金圓盤電極和Au(111)電極上未觀察到這個特徵,反映了Au電極表面結構對多巴胺電化學分析的重要性。在含有1 mM AA的0.1 M PBS中,多巴胺的檢測極限約為50 µM,比酸性溶液中的檢測極限差。這種差異歸因於在Au(100)電極上吸附的陰離子(AA-,PO4-)的影響。此外,多巴胺的氧化還表現出更不可逆的特性,將鹵化物或偽鹵化物修改到Au(100)表面可以抑制AA的氧化,表明吸附物種的極性會抑制AA擴散到電極。
最後,在目前的研究中對五種鹵化物和偽鹵化物進行了比較,發現KCN是分析多巴胺最合適的改性劑。CN修飾的Au(100)電極可以在含有1 mM AA的溶液中檢測到5 µM的多巴胺。相比於,裸露的Au(100)電極的檢測極限為50 µM。
The adsorption of cyanide (CN-) on Au(100) electrode was first examined by high resolution scanning tunneling microscope (STM) in 0.1 M sulfuric acid. The Au(100) electrode assumed that hex reconstruction structure at -0.2 V, which transformed into the (1 × 1) phase upon the addition of KCN, as revealed by real – time in situ STM imaging. The details of this phase transition have been revealed. As the potentials was made positive, oxidation occurred to produce AuCNad en route to anodic etching leading to a leaf-like surface morphology. Cyanide was irreversibly adsorbed to the Au(100) electrode, yielding linear features at negative potentials and a maze-like structure. These features were also found in pH 7 KCN solution. At positive potentials, the Au(100) surface dissolved, creating shallow pits on Au atom in depth. This etching process was slow enough that one could use STM to follow this event.
In 0.1 M KClO4 the adsorption of CN caused the Au(100) surface faceting into the fcc(210) structure, creating a more stable six – fold coordination environment for CN. At positive potentials, two oxidation steps, O1 and O2, can be distinguished, which are outlined as AuCN-ad → AuCNad + e-, and consecutive reactions AuCNad + CN- → Au(CN)2- and Au (exposed) + CN- → AuCNad + e-. The first reaction resulting in a order-to-disorder trasntion, The first reaction resulting in an order-to-disorder transition, causes the (2 × 2) structure to become disordered. The etching of Au(100) in the second process was also observed.
It is noteworthy that the adsorption of CN could produce depressed trenches on the Au(100) electrode in pH 7 KClO4. These surface features could serve as templates for fabricating Au surface alloys by depositing a foreigner metal, such as copper. The adsorption of KCN and the subsequent etching process are highly dependent on the concentration of KCN and the pH value. Gold electrode would dissolve faster with an increase of KCN concentration in more alkaline solutions.
The electrochemical detection of dopamine was examined by using an ordered Au(100) electrode in 0.1 M sulfuric acid. The oxidation of dopamine is evident in a cyclic voltammetric experiment with Au(100) electrode in a solution containing 1 mM ascorbic acid (AA) and 1 µM dopamine. This feature was not observed with Au disk and Au(111) electrodes, reflecting the importance of surface structure of Au electrode in conducting electrochemical analysis of dopamine. In 0.1 M PBS containing 1 mM AA, the detection limit for dopamine is approximately 50 µM, which is inferior to that found in acidic solutions. This contrast is attributed to the influence of anions (AA-, PO4-) that were adsorbed on the Au(100) electrode. Moreover, the redox features of dopamine appeared to be more irreversible. Modification of halides or pseudohalides on the Au(100) surface can inhibit the oxidation of AA, which speaks to the polarities of these entities and the suppressive effect on the diffusion of AA to electrode.
Finally, among the five halides and pseudohalides studied in the current study, KCN is the most suitable modifier to analyze dopamine. The CN-coated Au(100) electrode can detect dopamine down to 5 µM in a solution containing 1 mM AA. In comparison, the detection limit is 50 µM for a bare Au(100) electrode.
(1) Jerkiewicz, G. From Electrochemistry to Molecular-Level Research on the Solid—Liquid Electrochemical Interface: An Overview. 1997.
(2) Guttentag, A. I.; Wächter, T.; Barr, K. K.; Abendroth, J. M.; Song, T.-B.; Sullivan, N. F.; Yang, Y.; Allara, D. L.; Zharnikov, M.; Weiss, P. S. Surface structure and electron transfer dynamics of the self-assembly of cyanide on Au {111}. The Journal of Physical Chemistry C 2016, 120 (47), 26736-26746.
(3) Jang, J.; Lee, Y.; Yoon, J.-Y.; Yoon, H. H.; Koo, J.; Choe, J.; Jeon, S.; Sung, J.; Park, J.; Lee, W. C. One-dimensional assembly on two-dimensions: AuCN nanowire epitaxy on graphene for hybrid phototransistors. Nano letters 2018, 18 (10), 6214-6221.
(4) Jackowska, K.; Krysinski, P. New trends in the electrochemical sensing of dopamine. Analytical and bioanalytical chemistry 2013, 405, 3753-3771.
(5) Hubbard, A.; Stickney, J.; Soriaga, M.; Chia, V.; Rosasco, S.; Schardt, B.; Solomun, T.; Song, D.; White, J.; Wieckohski, A. Electrochemical processes at well-defined surfaces. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1984, 168 (1-2), 43-66.
(6) Salaita, G. N.; Laguren-Davidson, L.; Lu, F.; Walton, N.; Wellner, E.; Stern, D. A.; Batina, N.; Frank, D. G.; Lin, C.-H.; Benton, C. S. Electrochemical reactivity of 2, 2', 5, 5'-tetrahydroxybiphenyl and related compounds adsorbed at pt (111) surfaces: studies by eels, leed, auger spectroscopy and cyclic voltammetry. Journal of electroanalytical chemistry and interfacial electrochemistry 1988, 245 (1-2), 253-273.
(7) Cooper, S. E.; Venton, B. J. Fast-scan cyclic voltammetry for the detection of tyramine and octopamine. Analytical and bioanalytical chemistry 2009, 394, 329-336.
(8) Sánchez-Cortés, S.; Francioso, O.; Garcıa-Ramos, J.; Ciavatta, C.; Gessa, C. Catechol polymerization in the presence of silver surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2001, 176 (2-3), 177-184.
(9) Tenreiro, A.; Nabais, C.; Correia, J.; Fernandes, F.; Romero, J.; Abrantes, L. Progress in the understanding of tyramine electropolymerisation mechanism. Journal of Solid State Electrochemistry 2007, 11, 1059-1069.
(10) Majewska, U. E.; Chmurski, K.; Biesiada, K.; Olszyna, A. R.; Bilewicz, R. Dopamine Oxidation at Per (6‐deoxy‐6‐thio)‐α‐Cyclodextrin Monolayer Modified Gold Electrodes. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis 2006, 18 (15), 1463-1470.
(11) Ernst, H.; Knoll, M. Electrochemical characterisation of uric acid and ascorbic acid at a platinum electrode. Analytica chimica acta 2001, 449 (1-2), 129-134.
(12) Huffman, M. L.; Venton, B. J. Electrochemical properties of different carbon‐fiber microelectrodes using fast‐scan cyclic voltammetry. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis 2008, 20 (22), 2422-2428.
(13) Zhu, L.; Tian, C.; Zhai, J.; Yang, R. Sol–gel derived carbon nanotubes ceramic composite electrodes for electrochemical sensing. Sensors and Actuators B: Chemical 2007, 125 (1), 254-261.
(14) Lakard, S.; Pavel, I.-A.; Lakard, B. Electrochemical biosensing of dopamine neurotransmitter: A review. Biosensors 2021, 11 (6), 179.
(15) Thurgood, C.; Kirk, D.; Foulkes, F.; Graydon, W. Activation energies of anodic gold reactions in aqueous alkaline cyanide. Journal of the Electrochemical Society 1981, 128 (8), 1680.
(16) Cathro, K.; Koch, D. The anodic dissolution of gold in cyanide solutions. Journal of the Electrochemical Society 1964, 111 (12), 1416.
(17) Kunimatsu, K.; Seki, H.; Golden, W.; Gordon, J.; Philpott, M. A study of the gold/cyanide solution interface by in situ polarization-modulated Fourier transform infrared reflection absorption spectroscopy. Langmuir 1988, 4 (2), 337-341.
(18) Baltruschat, H.; Heitbaum, J. On the potential dependence of the CN stretch frequency on Au electrodes studied by SERS. Journal of electroanalytical chemistry and interfacial electrochemistry 1983, 157 (2), 319-326.
(19) Polcik, M.; Kittel, M.; Hoeft, J. T.; Terborg, R.; Toomes, R. L.; Woodruff, D. P. Adsorption geometry of CN on Cu (1 1 1) and Cu (1 1 1)/O. Surface science 2004, 563 (1-3), 159-168.
(20) Rogozhnikov, N. A.; Beck, R. Y. Thermodynamics and kinetics of adsorption of cyanide ions on silver. Part II. Journal of Electroanalytical Chemistry 1998, 457 (1-2), 31-34.
(21) Jentz, D.; Mills, P.; Celio, H.; Trenary, M. The surface chemistry of CN and H on Pt (111). Surface science 1996, 368 (1-3), 354-360.
(22) Hagans, P.; Chorkendorff, I.; Yates Jr, J. Scanning kinetic spectroscopy and temperature-programmed desorption studies of the adsorption and decomposition of hydrogen cyanide on the nickel (111) surface. The Journal of Physical Chemistry 1988, 92 (2), 471-476.
(23) Lipkowski, J.; Ross, P. N. Structure of Electrified Interfaces. International Journal of Materials Research 1995, 86 (1), 7-7.
(24) Safarowsky, C.; Spaenig, A.; Broekmann, P.; Wandelt, K. Reconstruction of a Cu (100) electrode in the presence of thiocyanate anions. Surface science 2003, 538 (3), 137-146.
(25) Baricuatro, J. H.; Kim, Y.-G.; Tsang, C. F.; Javier, A. C.; Cummins, K. D.; Hemminger, J. C. Reprint of" Selective conversion of CO into ethanol on Cu (511) surface reconstructed from Cu (pc): Operando studies by electrochemical scanning tunneling microscopy, mass spectrometry, quartz crystal nanobalance, and infrared spectroscopy". Journal of Electroanalytical Chemistry 2020, 875, 114757.
(26) Harel, S. Oxidation of ascorbic acid and metal ions as affected by NaCl. Journal of Agricultural and Food Chemistry 1994, 42 (11), 2402-2406.
(27) Magnussen, O.; Ocko, B.; Wang, J.; Adzic, R. In-situ X-ray diffraction and STM studies of bromide adsorption on Au (111) electrodes. The Journal of Physical Chemistry 1996, 100 (13), 5500-5508.
(28) Chen, A.; Shi, Z.; Bizzotto, D.; Lipkowski, J.; Pettinger, B.; Bilger, C. Iodide adsorption at the Au (111) electrode surface. Journal of Electroanalytical Chemistry 1999, 467 (1-2), 342-353.
(29) Mapson, L. The influence of halides on the oxidation of ascorbic acid. Biochemical Journal 1941, 35 (12), 1332.
(30) Lei, H.-W.; Uchida, H.; Watanabe, M. Electrochemical quartz crystal microbalance study of halide adsorption and concomitant change of surface excess of water on highly ordered Au (111). Langmuir 1997, 13 (13), 3523-3528.