跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳其昱
Chi-Yu Wu
論文名稱: 球面波位移多工之全像光碟讀取機構之研究
The study of shifting-multiplexed volume holographic optical disc with a spherical reference wave
指導教授: 孫慶成
Ching-Cherng Sun
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 94
語文別: 中文
論文頁數: 108
中文關鍵詞: 位元錯誤率位移多工球面波全像光學儲存
外文關鍵詞: BER, spherical reference wave, holographic data storage
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們利用球面波位移多工技術與體積全像的特性,發展一全像光儲存碟片之系統。由於位移多工造成之相位不匹配,繞射強度將隨著碟片旋轉而迅速衰減,因此我們針對碟片的位移選擇性作詳細的探討。此外,我們選定一空間調制器作為訊號光輸入元件,針對傳統光學系統與位移補償系統之不同儲存架構,探討其繞射訊號之特性,並以訊雜比與位元錯誤率詳細分析串音之影響。
    本論文以相位疊加法及瑞利–索末菲理論分析體積全像的繞射訊號,並證實了位移補償系統能有效地降低串音,解決體積全像儲存之困難,使全像儲存系統之實現又往前邁進了一大步。


    In this thesis we investigate a shifting-multiplexed volume holographic optical system with a spherical reference wave. To provide an overview of the characterization of the volume holographic optical disc, we first calculate the spatial selectivity of the system during reading process. The following we quantitatively examine the crosstalk noise by analyzing both signal to noise ratio and bit error rate, where making use of the spatial light modulator as the object signal.
    We have applied VOHIL and Rayleigh-Sommerfeld formula to simulate the diffracted pattern from a volume holographic optical disc with spherical reference wave. The shift-compensated system is proved to be free from inter-pixel crosstalk such that bit error rate can be reduced dramatically, making the realization of the volume holographic optical storage system possible.

    摘要.............................................I 目錄............................................IV 第一章 緒論......................................1 1.1 引言.........................................1 1.2 全像光學之發展...............................4 1.2.1 全像光學之簡介.............................4 1.2.2 光學儲存與體積全像.........................5 1.3 論文大綱與安排...............................8 第二章 體積全像.................................10 2.1 布拉格條件..................................10 2.2 分析理論....................................14 2.2.1 耦合理論法................................14 2.2.2 相位疊加法................................28 第三章 穿透式體積全像之光儲存碟片系統...........32 3.1 系統架構....................................32 3.2 相位疊加法之模擬與取樣分析..................35 3.2.1 相位疊加法之模擬..........................35 3.2.2 取樣點之分析..............................37 3.3 繞射光點位移補償效應........................43 3.4 光儲存碟片系統之位移選擇性..................46 3.4.1 碟片切線方向之位移選擇性與串音分析........46 3.4.2 碟片徑向之位移選擇性分析..................51 3.4.3 碟片之振動分析............................53 第四章 空間調制器為訊號光之串音分析.............56 4.1 空間調制器的理論模型........................56 4.2 布拉格不匹配之串音分析......................60 4.2.1 同頁的畫素串音分析........................63 4.2.2 多頁的光柵串音分析........................67 4.3 訊雜比之分析................................72 4.3.1 同頁之訊雜比..............................72 4.3.2 多頁之訊雜比..............................75 第五章 系統位元錯誤率之分析.....................78 5.1 位元錯誤率之介紹............................78 5.2 近似解析解之討論............................81 5.3 位元錯誤率之分析............................85 5.3.1 同頁畫素串音..............................85 5.3.2 多頁光柵串音..............................93 5.4 透鏡與4F系統................................94 第六章 結論.....................................96 參考文獻........................................98 中英文名詞對照表...............................102

    [1] H. Coufal and G. W. Burr, “Optical data storage,” Chapter 26,
    International Trends in Applied Optics, ed., A. Guenther, SPIE, 2002.
    [2] J. W. Goodman, Introduction to Fourier Optics, 2nd edi. (McGraw-Hill, New
    York, 2002).
    [3] P. J. van Heerden, “Theory of Optical Information Storage in Solids,”
    Appl. Opt. 2, 393-400 (1963).
    [4] E. N. Leith, A. Kozma, J. Upatnieks, J. Marks, and N. Massey, "Holographic
    data storage in three-dimensional media", Appl. Opt., 5, 1303-1311, 1966.
    [5] C. -C. Sun and W. -C. Su, "Three-Dimensional Shifting Selectivity of
    Random Phase Encoding in Volume Holograms ," Appl. Opt. 40, 1253-1260
    (2001).
    [6] H. A. Eggert, F. Kalkum, K. Buse, and B. Sturman, "Bragg selectivity of
    space-charge gratings in multidomain lithium niobate crystals," Opt. Lett.
    31, 1256-1258 (2006).
    [7] H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic data storage,
    (Springer, New York, 2000).
    [8] J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A.
    Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and
    G. T. Sincerbox, “Holographic data storage,” IBM journal of research and
    development, 44, 341-368 (2000).
    [9] J. T. Gallo and C. M. Verber, "Model for the effects of material shrinkage
    on volume holograms," Appl. Opt. 33, 6797- (1994)
    [10] J. E. Boyd, T. J. Trentler, R. K. Wahi, Y. I. Vega-Cantu, and V. L.
    Colvin, "Effect of film thickness on the performance of photopolymers as
    holographic recording materials ," Appl. Opt. 39, 2353-2358 (2000).
    [11] G. Ramos, A. Álvarez-Herrero, T. Belenguer, F. del Monte, and D.
    Levy, "Shrinkage Control in a Photopolymerizable Hybrid Solgel Material
    for Holographic Recording," Appl. Opt. 43, 4018-4024 (2004).
    [12] P. Boffi, D. Piccinin, M. C. Ubaldi, and M. Martinelli, "All-Optical
    Pattern Recognition for Digital Real-Time Information Processing ," Appl.
    Opt. 42, 4670-4680 (2003).
    [13] B. Fischer, M. Cronin-Golomb, J. O. White, and A. Yariv, "Amplified
    reflection, transmission, and self-oscillation in real-time holography,"
    Opt. Lett. 6, 519- (1981).
    [14] J. -J. P. Drolet, E. Chuang, G. Barbastathis, and D. Psaltis, "Compact,
    integrated dynamic holographic memory with refreshed holograms ," Opt.
    Lett. 22, 552-554 (1997).
    [15] F. Dubois, F. De Schryver, and B. Biran, "Theoretical study of size
    effects in volume holograms," J. Opt. Soc. Am. A 8, 270- (1991).
    [16] P. Yeh, Introduction to Photorefractive Nonlinear Optics, (Wiley-
    Interscience, New York, 1894), Chap. 2, p. 51
    [17] F. H. Mok, M. C. Tackitt, and H. M. Stoll, “Storage of 500 High-
    resolution holograms in LiNbO3 crystal,” Opt. Lett. 16, 605 (1991).
    [18] C. C. Sun, C. Y. Hsu, Y. O. Yang, W. C. Su, and A. E. T. Chiou, “All-
    optical angular sensing based on holography multiplexing with spherical
    waves,” Opt. Eng. 41, 2809-2813 (2002).
    [19] A. Yariv, "Interpage and interpixel cross talk in orthogonal (wavelength
    multiplexed) holograms," Opt. Lett. 18, 652- (1993).
    [20] G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage by using
    orthogonal wavelength-multiplexed volume hologram,” Opt. Lett. 17, 1471-
    1473 (1992).
    [21] D. Psaltis, M. Levene, A. Pu, G. Barbastathis, and K. Curtis, "Holographic
    storage using shift multiplexing," Opt. Lett. 20, 782- (1995).
    [22] W. C. Su, Y. W. Chen, C. C. Sun, and Y. Ouyang, “Multi-layer storage of a
    shift-multiplexed holographic disc,” Opt. Eng. 42, 1528-1529 (2003).
    [23] C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Volume hologram
    multiplexing using a deterministic phase encoding technique”, Opt.
    Commun., 85, 171, (1991).
    [24] Y. H. Lee and S. -D. Sohn, "Optical implementation of orthogonal phase-
    code multiplexing ," Opt. Lett. 26, 1990-1992 (2001)
    [25] C. B. Burckhardt, "Use of a random phase mask for the recording of Fourier
    transform holograms of data masks," Appl. Opt. 9, 695- (1970).
    [26] C. C. Sun, W. C. Su, B. Wang, and Y. Ouyang, “Diffraction selectivity of
    holograms with random phase encoding,” Opt. Commun. 175, 67-74 (2000).
    [27] G. J. Steckman, A. Pu, and D. Psaltis, “Storage density of shift-
    multiplexed holographic memory,” Appl. Opt. 40, 3387-3394 (2001).
    [28] S. S. Orlov and L. Hesselink, "Holographic shift multiplexing in thin
    volumetric media ," J. Opt. Soc. Am. B 20, 1912-1921 (2003).
    [29] 陳政憲, 無畫素串音之體積全像光儲存碟片之研究 , 國立中央大學光電所碩士論文,
    中華民國九十四年。
    [30] H. -Y. S. Li and D. Psaltis, "Three-dimensional holographic disks," Appl.
    Opt. 33, 3764- (1994).
    [31] S. S. Orlov, W. Phillips, E. Bjornson, L. Hesselink, and R. Okas, Ultra-
    high Transfer Rate High Capacity Holographic Disk Digital Data Storage
    System, in Proceedings of the 29th Applied Imagery and Pattern Recognition
    Workshop (AIPR2000) , J. Aanstoos, ed. (IEEE Computer Society, Los
    Alamitos, Calif., 2000), pp. 7177.
    [32] A. Bergeron, G. V. April, and H. H. Arsenault, "Recording holograms with
    diagonal coding on binary spatial light modulators for pattern
    recognition," Appl. Opt. 29, 1652- (1990).
    [33] C. W. Stirk, "Bit error rate of optical logic: fan-in, threshold, and
    contrast," Appl. Opt. 31, 5632- (1992).
    [34] L. Ding, W. -D. Zhong, C. Lu, and Y. Wang, "New bit-error-rate monitoring
    technique based on histograms and curve fitting," Opt. Express 12, 2507-
    2511 (2004).
    [35] W. -C. Chou and M. A. Neifeld, "Interleaving and Error Correction in
    Volume Holographic Memory Systems ," Appl. Opt. 37, 6951-6968 (1998).
    [36] W. -H. Zhu, "Holographic tomographic in three-dimensional photoelasticity
    within the Born approximation," J. Opt. Soc. Am. A 9, 1964- (1992).
    [37] C. C. Sun, “Simplified model for diffraction analysis of volume
    holograms,” Opt. Eng. 42, 1184-1185 (2003).
    [38] G. Barbastathis, M. Levene, and D. Psaltis, "Shift multiplexing with
    spherical reference waves," Appl. Opt. 35, 2403- (1996).
    [39] C. Moser, W. Liu, Y. Fainman, and D. Psaltis, "Folded shift
    multiplexing ," Opt. Lett. 28, 899-901 (2003).
    [40] P. Yeh, Introduction to Photorefractive Nonlinear Optics, (Wiley-
    Interscience, New York, 1894).
    [41] U. Mahlab, J. Rosen, and J. Shamir, "Iterative generation of holograms on
    spatial light modulators," Opt. Lett. 15, 556- (1990).
    [42] S. Nishiwaki, "Bit error analysis for optical disks," Appl. Opt. 29, 644-
    (1990).
    [43] G. P. Nordin and P. Asthana, "Effects of cross talk on fidelity in page-
    oriented volume holographic optical data storage," Opt. Lett. 18, 1553-
    (1993).
    [44] C. Gu, G. Sornat, and J. Hong, "Bit-error rate and statistics of complex
    amplitude noise in holographic data storage," Opt. Lett. 21, 1070- (1996).

    QR CODE
    :::