| 研究生: |
王湘渝 Xiang-Yu Wang |
|---|---|
| 論文名稱: |
改良式前濃縮儀搭配氣相層析儀即時監測大氣中輕質揮發性有機化合物 Improved Pre-concentrator for Gas Chromatography Monitoring Ambient Light Non-methane Hydrocarbons |
| 指導教授: |
王家麟
Jia-Lin Wang 姚學麟 Shueh-Lin Yau |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 130 |
| 中文關鍵詞: | 改良式前濃縮儀 、長程傳輸事件 、本地排放事件 |
| 外文關鍵詞: | Improved Pre-concentrator, Long-range transport event, Local emission event |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
實驗室曾於2016年底於富貴角量測乙烷與乙烯濃度與其比值,發現可作為偵測境外長程移入污染氣團之有效指標。然而由於台灣為潮濕的海島型氣候,於監測過程中,濃縮捕捉步驟易因多水氣結冰干擾使監測頻繁中斷,故本研究將原先之前濃縮儀進行改良。
改良加裝線上除水機制以解決水氣干擾問題的方法即是在致冷模組中的捕捉管前加入一段玻璃空管,利用致冷模組在-30ºC,進行樣品捕捉時同時先將樣品中的水氣預先凝結在上游的玻璃空管中,以避免大量水氣進入後端捕捉管內,因結冰再熱脫附汽化時造成吸附材料崩解。本研究所開發的致冷除水模組與Nafion dryer相較之下,因不需使用乾燥氣體,且可循環使用,無耗材需求及設備維護上之成本。
本研究在2017年12月5日至2018年1月7日期間,將改良後之監測設備再次放置於富貴角測站內進行乙烷、乙烯的濃度監測。系統對各物種的檢量線之線性關係R2值高於0.99,RSD值介於0.66~0.94%之間,其MDL值介於0.16~0.38 ppb之間,具有良好的精準度。些微的乙烷與乙烯濃度變化皆能夠被偵測,故能清楚指示污染空氣。
當污染物來自於境外時,乙烷與乙烯濃度偏低,但其比值會呈現相對的高值,在與環保署在富貴角測站所監測的PM2.5、PM10、O3、NOX、
CO、SO2及風速風向等數據比對後,證實在12/24的PM2.5高值為本地排放所造成,而在12/25的PM2.5高值則是長程傳輸事件所造成。然而在12/8及12/11的PM2.5高值事件則較為特殊,觀察SO2、NOX濃度變化發現在同一時間點有突然上升的趨勢,因此推測是在海上運作的船舶排放出來的空氣物染物會造成本研究監測系統的干擾,造成乙烷與乙烯濃度偏高,其比值會呈現相對的低值,出現本地排放事件的特徵,使長程傳輸事件的特徵被遮蔽,進而造數據判讀上的錯誤。
At the end of 2016, our laboratory set up a gas chromatographic (GC) system at the northern tip of Taiwan, Fuguijiaoto, to measure real-time mixing ratios of ethane, propane, ethylene and propylene. We found that the ratio of ethane to ethylene can be used as an effective indicator of the long-range transported (LRT) polluted air masses. However, due to high air humidity, the pre-concentration using the sorbent trap at sub-ambient temperatures was frequently clogged due to icing, resulting in insufficient trapping or even damage of the sorbent packing. As a result, the objective of this study is to solve the problem of ice clogging during trapping to facilitate continuous monitoring without interruption.
The solution is to add an empty glass tube in front of the sorbent trap in the same cooling module to be cooled at -30℃ when trapping. Excess water vapor will condense onto the glass tube, while the air sample that has been mostly dried can pass through to the trap. Compared with the Nafion dryer, our solution is more rugged and involves no consumables, and is almost maintenance free.
Laboratory test showed that the linearity of the four target species is higher than 0.99 (R2). Precision (RSD) is between 0.66 and 0.94%, and the measurement detection limits (MDL) is between 0.16 and 0.38 ppb. From December 5, 2017 to January 7, 2018, the improved system was placed in the Fuguijiao station again with 15 min GC cycle time, and no interruption due to ice clogging of the trap had occurred, suggesting the water removal solution was successful.
Continuous data of PM2.5, PM10, O3, NOX, CO, SO2 and wind parameters were used to support the interpretation of the observed ethane/ethylene ratios at the Fuguijiao station. We found that the high PM2.5 peak of 12/24 was a local event as suggested by the relatively low values of ethane/ethylene, while the PM2.5 peak of 12/25 was a LRT event as indicated by the relatively high values of ethane/ethylene. This finding was consistent with our presumption of the ethane/ethylene ratio as an indicator of LRT. However, the PM2.5 peaks at 12/8 and 12/11 are more intriguing. The ethane/ethylene ratios showed relatively low values which should have been indicative of local events. However, both the wind field and model simulation suggested otherwise. We found that the SO2 and NOX levels during these two time periods also elevated, consistent with the relatively low ethane/ethylene ratios. It turns out that the contradiction was most likely caused by the ship emissions off-shore, which explains the elevated values of NOx, SO2, ethane and ethylene, as well as the relatively low ratios of ethane/ethylene.
1. 中華民國行政院環境保護署, 中國大陸沙塵對我國空氣品質之影響
2. 中華民國行政院環境保護署, 中國大陸跨境污染對我國的影響.
3. Chou, C. C. K.; Liu, S. C.; Lin, C.-Y.; Shiu, C.-J.; Chang, K.-H., The trend of surface ozone in Taipei, Taiwan, and its causes: Implications for ozone control strategies. Atmospheric Environment 2006, 40 (21), 3898-3908.
4. Chan, C. C.; Chuang, K. J.; Chen, W. J.; Chang, W. T.; Lee, C. T.; Peng, C. M., Increasing cardiopulmonary emergency visits by long-range transported Asian dust storms in Taiwan. Environ Res 2008, 106 (3), 393-400.
5. Levy, H., 2nd, Normal atmosphere: large radical and formaldehyde concentrations predicted. Science 1971, 173 (3992), 141-143.
6. Logan, J. A.; Prather, M. J.; Wofsy, S. C.; McElroy, M. B., Tropospheric chemistry: A global perspective. Journal of Geophysical Research 1981, 86 (C8), 7210-7254.
7. Atkinson, R., Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds under atmospheric conditions. Chemical Reviews 1986, 86 (1), 69-201.
8. Atkinson, R., Gas-phase tropospheric chemistry of organic compounds: A review. Atmospheric Environment. Part A. General Topics 1990, 24 (1), 1-41.
9. Atkinson, R., Kinetics and Mechanisms of the Gas‐Phase Reactions of the NO3 Radical with Organic Compounds. Journal of Physical and Chemical Reference Data 1991, 20 (3), 459-507.
10. Atkinson, R., Atmospheric chemistry of VOCs and NOx. Atmospheric Environment 2000, 34 (12-14), 2063-2101.
11. Ryerson, T. B.; Trainer, M.; Holloway, J. S.; Parrish, D. D.; Huey, L. G.; Sueper, D. T.; Frost, G. J.; Donnelly, S. G.; Schauffler, S.; Atlas, E. L.; Kuster, W. C.; Goldan, P. D.; Hubler, G.; Meagher, J. F.; Fehsenfeld, F. C., Observations of ozone formation in power plant plumes and implications for ozone control strategies. Science 2001, 292 (5517), 719-723.
12. 歐陽長風, 台灣氣態污染物背景值變化特徵與大氣傳輸機制之關係. 國立中央大學 博士論文 2010.
13. 中華民國行政院環境保護署環境檢驗所, 揮發性有機物空氣污染管制及排放標準. 2013.
14. Pacifico, F.; Harrison, S. P.; Jones, C. D.; Sitch, S., Isoprene emissions and climate. Atmospheric Environment 2009, 43 (39), 6121-6135.
15. EPA, Ozone Pollution and Your Patients' Health. www.epa.gov/ozone-pollution-and-your-patients-health/health-effects-ozone-general-population.
16. Simpson, I. J.; Sulbaek Andersen, M. P.; Meinardi, S.; Bruhwiler, L.; Blake, N. J.; Helmig, D.; Rowland, F. S.; Blake, D. R., Long-term decline of global atmospheric ethane concentrations and implications for methane. Nature 2012, 488 (7412), 490-494.
17. Rudolph, J.; Johnen, F. J., Measurements of light atmospheric hydrocarbons over the Atlantic in regions of low biological activity. Journal of Geophysical Research 1990, 95 (D12), 20583-20591.
18. 台塑石化股份有限公司, 105年度公司年報. 2017.
19. Ou-Yang, C.-F.; Hsieh, H.-C.; Wang, S.-H.; Lin, N.-H.; Lee, C.-T.; Sheu, G.-R.; Wang, J.-L., Influence of Asian continental outflow on
the regional background ozone level in northern South China Sea. Atmospheric Environment 2013, 78, 144-153.
20. 行政院環保署空氣品質監測網, 空氣品質指標.
21. Feng, S.; Gao, D.; Liao, F.; Zhou, F.; Wang, X., The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicol Environ Saf 2016, 128, 67-74.
22. Hu, X.; Zhang, Y.; Ding, Z.; Wang, T.; Lian, H.; Sun, Y.; Wu, J., Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China. Atmospheric Environment 2012, 57, 146-152.
23. Pope Iii, C. A., Lung Cancer, Cardiopulmonary Mortality, and Long-term Exposure to Fine Particulate Air Pollution. Jama 2002, 287 (9), 1132-1141.
24. Plass-Dülmer, C.; Michl, K.; Ruf, R.; Berresheim, H., C2–C8 Hydrocarbon measurement and quality control procedures at the Global Atmosphere Watch Observatory Hohenpeissenberg. Journal of Chromatography A 2002, 953 (1-2), 175-197.
25. Tanner, D.; Helmig, D.; Hueber, J.; Goldan, P., Gas chromatography system for the automated, unattended, and cryogen-free monitoring of C2 to C6 non-methane hydrocarbons in the remote troposphere. J Chromatogr A 2006, 1111 (1), 76-88.
26. 戴順育, 氣相層析技術應用於揮發性有機化合物分析方法中熱脫附行為之診斷. 國立中央大學 碩士論文 2014.
27. 李明霞, 以逆吹式氣相層析法分析氣體成份. 國立中央大學 碩士論文 2012.
28. 林葳涓, 煙道氣揮發性有機化合物連續監測方法開發. 國立中央大學 碩士論文 2015.
29. 鄭閎文, 氣相層析法應用於工業排放連續監測. 國立中央大學 碩士論文 2013.
30. 黃亭郡, 空氣中輕質碳氫化合物在線監測方法. 國立中央大學 碩士論文 2017.
31. Valco Instruments Co. Inc. - Backflush of Precolumn to Vent – Valco 6 port valve. https://www.vici.com/support/app/app2.php.
32. Wiedensohler, A.; Birmili, W., GAW - WCCAP recommendation for aerosol drying. Leibniz Institute for Tropospheric Research.
33. 林彥宏, VOC 前濃縮與預警系統之建構. 國立中央大學 碩士論文 2000.
34. 游可綱, 新型熱脫附濃縮儀設計應用於揮發性有機污染物分析. 國立中央大學 碩士論文 2017.
35. Davis, M. E.; Saldarriaga, C.; Montes, C.; Garces, J.; Crowdert, C., A molecular sieve with eighteen-membered rings. Nature 1988, 331 (6158), 698-699.
36. Wilson, S. T.; Lok, B. M.; Messina, C. A.; Cannan, T. R.; Flanigen, E. M., Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids. Journal of the American Chemical Society 1982, 104 (4), 1146-1147.
37. 楊末雄;何國榮;劉希平;曾昭桓;陳秀卿;張美玲;熊同銘;劉鎮山;丁望賢;孫毓璋;王家麟;王正雄;藍啟仁, 環境分析-原理與應用. 環境分析學會 2012.
38. Pollmann, J.; Helmig, D.; Hueber, J.; Tanner, D.; Tans, P. P., Evaluation of solid adsorbent materials for cryogen-free trapping-gas chromatographic analysis of atmospheric C2-C6 non-methane hydrocarbons. J Chromatogr A 2006, 1134 (1-2), 1-15.
39. 行政院環境保護署, 空氣品質監測網, 空氣品質測站, 即時值查詢系統. 2018.
40. 林冠佑, 船用柴油引擎排氣之濕式淨化處理研究. 國立成功大學 碩士論文 2006.
41. 黃正清, 遠洋漁船排放CO2之調查與評估. 國立成功大學 漁船及船舶機械研究中心 2002.
42. 黃正清;楊春陵, 改善及調查南部遠洋及大型漁船廢氣排放之研究. 國立成功大學 漁船及船舶機械研究中心 2001.
43. 劉國地, 實船測試漁船燃油添加黏稠劑新配方之研究. 國立高雄海洋科技大學 碩士論文 2010.
44. 中油油品行銷事業部, 柴油小常識. https://new.cpc.com.tw/division/mb/product-text.aspx?id=11.
45. 郭勝儒, 空氣中氯乙烯、1, 2-二氯乙烷 GC/MS 在線監測方法 國立中央大學 碩士論文 2017.