跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張喬博
CHIAO-PO CHANG
論文名稱: 雷射直寫自還原金屬複合墨水製作高抗氧化銅鎳合金網格透明電極
Fabrication of Oxidation Resistant, Cu-Ni Alloy Metal-mesh Transparent Electrode by Laser Direct Write from Self-Reduction Metal Complex Inks
指導教授: 何正榮
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 86
中文關鍵詞: 雷射直寫透明電極自還原合金網格電極
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 銦錫氧化物(Indium tin oxide, ITO)具有著良好的透光度以及導電性,在透明電極發展中有著相當重要的地位,然而ITO相當缺乏機械性質,無法應用於發展中的撓性面板或穿戴式電子產品的電極。大量的研究指出透過金屬金、銀、銅製作的可撓電極有很大的機會可以取代ITO,然而金、銀昂貴,銅容易因為氧化失去電性,故本研究旨在開發一種可以降低成本且壽命較長的銅鎳合金電極,並以可在大氣環境下直接製作之雷射直寫技術製造,最後在高溫環境檢測不同銅鎳成份比合金電極之電性變化。
    甲酸鎳和甲酸銅皆為可加熱自還原的有機金屬鹽類,最大的優點是無須還原劑。本研究透過混合不同莫耳數比的甲酸銅以及甲酸鎳於有機溶劑中,將製備完成的複合金屬墨水塗佈於玻璃基板形成均勻薄膜,透過50倍聚焦532 nm綠光雷射誘發甲酸銅以及甲酸鎳的熱分解並且燒結,搭配移動平台可以在無需光罩且在大氣環境下進行金屬的圖案化,透過上述方法可以製作出片電阻 70 Ω/□、透光度大於80%、平均厚度500 nm的透明銅鎳合金網格電極。
    研究指出銅在高溫環境下會因為氧化而大幅度提升電阻,於本研究中,將純銅網格電極以及不同比例的銅鎳網格電極放置於250 °C加熱器上,銅網格電極在1~2小時電阻值變化約為106 倍,而銅鎳網格電極(溶液中Cu:Ni=1:2)經過48小時電阻值變化不超過3倍。


    Indium tin oxide, ITO, has good performance in both transmittance and conductivity. Thus, it has been playing an important role in transparent conducting electrodes. However, ITO is brittle that restricts its applications in the blooming flexible electrotrincs. Many research reports reveal that metal-mesh-based electrodes by varios metal materials such as gold, silver, and copper, have demonstrated high potential as alternative transparent electrodes. However, gold and silver are too expensive and copper is easy to get oxidated either at the duration of fabricating process or in the course of operations. Thus, this study is committing to develop a low-cost alloy electrode that is with high oxidation resistance. We aim to develop a copper-nickel-alloy-based metal mesh electrode fabricated by the technique of laser direct write. The resulting capability in oxidation resistance is tested in an elevated temperature environment.
    Copper formate and nickel formate are all metal organic thermal decomposition (MOD) compounds that take the advantages in both reducing to metal ions without the need of any reducing agents and obtaining the resulting various compound solutions by mixing both inks at different molar ratios. The mixed MOD solution is then spin-coated on a glass substrate and dried in vacuum at 100 °C to form a uniform MOD thin film. It is then heated by a focused 532 nm laser beam to induce thermal decompositons of both copper formate and nickel formate and sintered reduced copper and nickel particles. The pattern of the resulting metal-mesh can be accomplished by laser direct wirte, a maskless process and executable in the ambient. Results show that the fabricated copper-nickel alloy electrode exhibit good characterisitics: sheet resistance less than 70 Ω/□, transmittance over 80% and the average thickness about 500 nm.
    Copper is very easy to get oxided, expecially at high temperatures. The excellent ability in oxidation resistance of our copper-nickel mesh elelctrode is examined in an oven maintaining at temperature up to 250 °C for 48 hours. The resistance increasement is only 3 folds, which is much more smaller than that of a copper mesh electrode that shows 106 times in resistance enhancement.

    摘要 iii Abstract iv 目錄 v 圖目錄 viii 表目錄 xi Chapter 1 緒論 1 1-1 前言 1 1-2 研究背景、目的與方法 3 Chapter 2 文獻回顧與基礎理論 5 2-1 金屬電極 5 2-1-1 物理汽相沉積圖案化金屬製程 5 2-1-2 氙燈製程燒結金屬薄膜 7 2-1-3 噴墨製程 9 2-1-4 化學鍍製作透明電極 12 2-1-5 金屬奈米線 13 2-2 熱還原金屬墨水 16 2-3 雷射直寫技術 20 2-4 銅抗氧化 25 2-5 傳承與創新 28 Chapter 3 實驗方法 29 3-1 實驗流程與方法 29 3-2 實驗步驟 30 3-2-1 玻璃基板處理 30 3-2-2 甲酸銅以及甲酸鎳配製具自還原性有機金屬墨水 30 3-2-3 薄膜製備 30 3-2-4 雷射誘發有機金屬熱分解 30 3-3 實驗用品 31 3-4 材料檢測分析儀器 33 3-4-1 單晶X光繞射儀 (Single-Crystal X-ray Diffraction, XRD) 33 3-4-2 熱重分析儀 (Thermogravimetric analysis, TGA) 33 3-4-3 場發掃描式電子顯微鏡 (Field-emmision Scanning Electronic Microscopy, FE-SEM) 34 3-4-4 高解析掃描穿透式電子顯微鏡 34 Chapter 4 結果與討論 35 4-1 材料製備結果 35 4-1-1 甲酸銅/甲酸鎳/1-氨基-2丙醇/異丙醇 金屬墨水 35 4-2 雷射直寫 38 4-2-1 雷射誘發熱分解以及燒結銅鎳形成合金導線 38 4-3 表面形貌與成份分析 38 4-3-1 溶液內銅:鎳=1:1之表面形貌以及成份分析 38 4-3-2 溶液內銅:鎳=2:1之表面形貌以及成份分析 42 4-3-3 溶液內銅:鎳=1:2之表面形貌以及成份分析 46 4-3-4 以300°C加熱Cu:Ni=1:2 50 4-3-5 添加更多1-胺基-2-丙醇,Cu:Ni=1:2 53 4-3-6 添加更多1-胺基-2-丙醇,Cu:Ni=1:4,並且以兩台EDS檢測 54 4-3-7 小結 56 4-4 金屬固溶探討 57 4-4-1 Hume-Rothery rules 58 4-4-2 Bragg’s law 58 4-4-3 XRD、HRTEM分析 59 4-5 電極特性 63 Chapter 5 結論與未來工作 68 5-1 結論 68 5-2 未來工作 68 參考文獻 70 碩士論文口試教授問題集 74

    [1] Sim, B., Kim, E. H., Park, J., & Lee, M. (2009). Highly enhanced mechanical stability of indium tin oxide film with a thin Al buffer layer deposited on plastic substrate. Surface and Coatings Technology, 204(3), 309-312.
    [2] Wang, S., Li, M., Wu, J., Kim, D. H., Lu, N., Su, Y., ... & Rogers, J. A. (2012). Mechanics of epidermal electronics. Journal of Applied Mechanics, 79(3), 031022. ISO 690
    [3] Ye, T., Jun, L., Kun, L., Hu, W., Ping, C., Ya-Hui, D., ... & Yu, D. (2017). Inkjet-printed Ag grid combined with Ag nanowires to form a transparent hybrid electrode for organic electronics. Organic Electronics, 41, 179-185.
    [4]Metal price of Indium. 取自
    http://www.etf.com/sections/features-and-news/1915-indium-no-screen-test-needed?nopaging=1
    [5] Metal price of Indium. 取自
    http://www.infomine.com/investment/metal-prices/iridium/5-year/
    [6] Bae, S., Kim, S. J., Shin, D., Ahn, J. H., & Hong, B. H. (2012). Towards industrial applications of graphene electrodes. Physica Scripta, 2012(T146), 014024. ISO 690
    [7] Yu, Z., Hu, L., Liu, Z., Sun, M., Wang, M., Grüner, G., & Pei, Q. (2009). Fully bendable polymer light emitting devices with carbon nanotubes as cathode and anode. Applied Physics Letters, 95(20), 299.
    [8] Wu, J., Agrawal, M., Becerril, H. A., Bao, Z., Liu, Z., Chen, Y., & Peumans, P. (2009). Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS nano, 4(1), 43-48.
    [9] Maurer, J. H., González-García, L., Reiser, B., Kanelidis, I., & Kraus, T. (2016). Templated self-assembly of ultrathin gold nanowires by nanoimprinting for transparent flexible electronics. Nano letters, 16(5), 2921-2925.
    [10] Im, H. G., Jung, S. H., Jin, J., Lee, D., Lee, J., Lee, D., ... & Bae, B. S. (2014). Flexible transparent conducting hybrid film using a surface-embedded copper nanowire network: a highly oxidation-resistant copper nanowire electrode for flexible optoelectronics. ACS nano, 8(10), 10973-10979.
    [11] Vosgueritchian, M., Lipomi, D. J., & Bao, Z. (2012). Highly conductive and transparent PEDOT: PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Advanced functional materials, 22(2), 421-428.
    [12] Kim, Y. H., Sachse, C., Machala, M. L., May, C., Müller‐Meskamp, L., & Leo, K. (2011). Highly conductive PEDOT: PSS electrode with optimized solvent and thermal post‐treatment for ITO‐free organic solar cells. Advanced Functional Materials, 21(6), 1076-1081.
    [13] Chee, S. S., & Lee, J. H. (2014). Preparation and oxidation behavior of Ag-coated Cu nanoparticles less than 20 nm in size. Journal of Materials Chemistry C, 2(27), 5372-5381. ISO 690
    [14] Song, J., Li, J., Xu, J., & Zeng, H. (2014). Superstable transparent conductive Cu@ Cu4Ni nanowire elastomer composites against oxidation, bending, stretching, and twisting for flexible and stretchable optoelectronics. Nano letters, 14(11), 6298-6305. ISO 690
    [15] Malviya, K. D., Srivastava, C., & Chattopadhyay, K. (2017). Phase formation and stability of Ag–60 at% Cu alloy nanoparticles synthesized by chemical routes in aqueous media. Physical Chemistry Chemical Physics, 19(41), 28006-28013.
    [16] Yim, C., Sandwell, A., & Park, S. S. (2016). Hybrid Copper–Silver Conductive Tracks for Enhanced Oxidation Resistance under Flash Light Sintering. ACS applied materials & interfaces, 8(34), 22369-22373.
    [17] Li, W., Hu, D., Li, L., Li, C. F., Jiu, J., Chen, C., ... & Suganuma, K. (2017). Printable and Flexible Copper–Silver Alloy Electrodes with High Conductivity and Ultrahigh Oxidation Resistance. ACS applied materials & interfaces, 9(29), 24711-24721.
    [18] Park, H. J., Jo, Y., Cho, M. K., Woo, J. Y., Kim, D., Lee, S. Y., ... & Jeong, S. (2018). Highly durable Cu-based electrodes from a printable nanoparticle mixture ink: flash-light-sintered, kinetically-controlled microstructure. Nanoscale, 10(11), 5047-5053.
    [19] Ghosh, D. S., Chen, T. L., & Pruneri, V. (2010). High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid. Applied Physics Letters, 96(4), 041109. ISO 690
    [20] Fuh, Y. K., & Lien, L. C. (2013). Pattern transfer of aligned metal nano/microwires as flexible transparent electrodes using an electrospun nanofiber template. Nanotechnology, 24(5), 055301.
    [21] Yabuki, A., Arriffin, N., & Yanase, M. (2011). Low-temperature synthesis of copper conductive film by thermal decomposition of copper–amine complexes. Thin Solid Films, 519(19), 6530-6533. ISO 690
    [22] Lee, D., Paeng, D., Park, H. K., & Grigoropoulos, C. P. (2014). Vacuum-free, maskless patterning of Ni electrodes by laser reductive sintering of NiO nanoparticle ink and its application to transparent conductors. ACS nano, 8(10), 9807-9814.
    [23] Ryu, J., Kim, H. S., & Hahn, H. T. (2011). Reactive sintering of copper nanoparticles using intense pulsed light for printed electronics. Journal of Electronic Materials, 40(1), 42-50.
    [24] Tsai, C. Y., Chang, W. C., Chen, G. L., Chung, C. H., Liang, J. X., Ma, W. Y., & Yang, T. N. (2015). A study of the preparation and properties of antioxidative copper inks with high electrical conductivity. Nanoscale research letters, 10(1), 357.
    [25] Li, W., Zhang, H., Gao, Y., Jiu, J., Li, C. F., Chen, C., ... & Nagao, S. (2017). Highly reliable and highly conductive submicron Cu particle patterns fabricated by low temperature heat-welding and subsequent flash light sinter-reinforcement. Journal of Materials Chemistry C, 5(5), 1155-1164.

    [26] Shin, D. H., Woo, S., Yem, H., Cha, M., Cho, S., Kang, M., ... & Piao, Y. (2014). A self-reducible and alcohol-soluble copper-based metal–organic decomposition ink for printed electronics. ACS applied materials & interfaces, 6(5), 3312-3319. ISO 690
    [27] Liang, K. L., Wang, Y. C., Lin, W. L., & Lin, J. J. (2014). Polymer-assisted self-assembly of silver nanoparticles into interconnected morphology and enhanced surface electric conductivity. RSC Advances, 4(29), 15098-15103. ISO 690
    [28] Ye, T., Jun, L., Kun, L., Hu, W., Ping, C., Ya-Hui, D., ... & Yu, D. (2017). Inkjet-printed Ag grid combined with Ag nanowires to form a transparent hybrid electrode for organic electronics. Organic Electronics, 41, 179-185.
    [29] Jang, Y., Kim, J., & Byun, D. (2013). Invisible metal-grid transparent electrode prepared by electrohydrodynamic (EHD) jet printing. Journal of Physics D: Applied Physics, 46(15), 155103.
    [30] Schneider, J., Rohner, P., Thureja, D., Schmid, M., Galliker, P., & Poulikakos, D. (2016). Electrohydrodynamic nanodrip printing of high aspect ratio metal grid transparent electrodes. Advanced Functional Materials, 26(6), 833-840.
    [31] Hsu, P. C., Kong, D., Wang, S., Wang, H., Welch, A. J., Wu, H., & Cui, Y. (2014). Electrolessly deposited electrospun metal nanowire transparent electrodes. Journal of the American Chemical Society, 136(30), 10593-10596.
    [32] Khan, A., Lee, S., Jang, T., Xiong, Z., Zhang, C., Tang, J., ... & Li, W. D. (2017). Scalable Solution-processed Fabrication Strategy for High-performance, Flexible, Transparent Electrodes with Embedded Metal Mesh. Journal of visualized experiments: JoVE, (124).
    [33] Han, S., Hong, S., Ham, J., Yeo, J., Lee, J., Kang, B., ... & Ko, S. H. (2014). Fast plasmonic laser nanowelding for a cu‐nanowire percolation network for flexible transparent conductors and stretchable electronics. Advanced materials, 26(33), 5808-5814.
    [34] Kim, D. G., Kim, J., Jung, S. B., Kim, Y. S., & Kim, J. W. (2016). Electrically and mechanically enhanced Ag nanowires-colorless polyimide composite electrode for flexible capacitive sensor. Applied Surface Science, 380, 223-228.
    [35] Hong, S., Yeo, J., Kim, G., Kim, D., Lee, H., Kwon, J., ... & Ko, S. H. (2013). Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink. ACS nano, 7(6), 5024-5031.
    [36] Min, H., Lee, B., Jeong, S., & Lee, M. (2016). Laser-direct process of Cu nano-ink to coat highly conductive and adhesive metallization patterns on plastic substrate. Optics and Lasers in Engineering, 80, 12-16. ISO 690
    [37] Lee, D., Paeng, D., Park, H. K., & Grigoropoulos, C. P. (2014). Vacuum-free, maskless patterning of Ni electrodes by laser reductive sintering of NiO nanoparticle ink and its application to transparent conductors. ACS nano, 8(10), 9807-9814.
    [38] Shou, W., Mahajan, B. K., Ludwig, B., Yu, X., Staggs, J., Huang, X., & Pan, H. (2017). Low‐Cost Manufacturing of Bioresorbable Conductors by Evaporation–Condensation‐Mediated Laser Printing and Sintering of Zn Nanoparticles. Advanced Materials, 29(26), 1700172.
    [39] Ohishi, T., & Kimura, R. (2015). Fabrication of copper wire using glyoxylic acid copper complex and laser irradiation in air. Materials Sciences and Applications, 6(09), 799.
    [40] Yabuki, A., Ichida, Y., Kang, S., & Fathona, I. W. (2017). Nickel film synthesized by the thermal decomposition of nickel-amine complexes. Thin Solid Films, 642, 169-173.
    [41] "陳郁文,「二氧化碳之捕集及再利用技術之應用介紹」,工業污染防治 第 94 期(Apr. 2005) "
    [42]Braag’s Law取自:
    https://zh.wikipedia.org/wiki/%E5%B8%83%E6%8B%89%E6%A0%BC%E5%AE%9A%E5%BE%8B

    QR CODE
    :::