| 研究生: |
徐佳芸 Chia-yun Hsu |
|---|---|
| 論文名稱: | Circular Numerical Range of S_n-Matrices |
| 指導教授: |
高華隆
Hwa-Long Gau |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 39 |
| 中文關鍵詞: | 數值域 、數值域的半徑 、Blaschke product |
| 外文關鍵詞: | Numerical Range, Numerical Radius, Blaschke product |
| 相關次數: | 點閱:25 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
$S_n$矩陣的數值域是一個圓盤,我們想知道第$k$層的數值域是否也是圓盤。我們讓$S_5$矩陣的特徵質屬於實數和數值域為圓盤。
如果$S_n$結合Blaschke product $B$,並且$B$等於$C$合成$D$,其中$C$的degree是2、$D$的degree是3。我們會得到$S_5$的第2層也會是圓,$S_5$的第3層會是單點。
$A$和$B$是2乘2矩陣,我們有$w(A+B)\leq w(A)+w(B)$基本的不等式。我們對在等號成立時感到興趣。 然而我們得到等號成立時,$A$和$B$矩陣必須滿足一些充分必要條件。
For an $S_n$-matrix with a circular disc as its numerical range, we want to know whether its rank-$k$ numerical range is also a circular disc. We show that, for an $S_5$-matrix $A$ with real spectrum and circular numerical range, if its associated Blaschke product $B$ has a normalized decomposition $B=C\circ D$, with $C$ of degree 2 and $D$ of degree 3, then $\Lambda_2(A)$ is also a circular disk and $\Lambda_3(A)$ is singleton (cf. Theorem 3.3). For $A$ and $B$ be $2\times2$ matrices, we have $w(A+B)\le w(A)+w(B)$. We are interested in when it becomes
equality. We obtain a necessary and sufficient condition for $w(A+B)= w(A)+w(B)$ to hold (cf. Proposition 4.3).
[1] M.D.ChoiandC.K.Li, Constrainedunitarydilationsandnumericalranges,
J. OperatorTheory46(2001),pp.435–447.
[2] M.D.Choi,D.W.Kribs,K.Yczkowski, Higher-ranknumericalrangesand
compressionproblems, LinearAlgebraAppl.,418(2006),828-839.
[3] M.D.Choi,M.Giesinger,J.A.HolbrookandD.W.Kribs, Geometryof
higher-ranknumericalranges, LinearandMultilinearAlgebra,56(2008),
53-64.
[4] M.D.Choi,J.A.Holbrook,D.W.KribsandK.Yczkowski, Higher-rank
numericalrangesofunitaryandnormalmatrices, OperatorsandMatrices,
1 (2008),409-426.
[5] U.Daeppa,P.Gorkina,A.Shafferb,B.SokolowskycandK.Vossa, Decom-
posingfiniteBlaschkeproducts, J.Math.Anal.Appl.,426(2015),1201-1216.
[6] H.-L.GauandP.Y.Wu, Numericalrangeof S(ϕ), LinearandMultilinear
Algebra, 45(1998),49-73.
[7] H.-L.GauandP.Y.Wu, Lucas’theoremrefined, LinearandMultilinear
Algebra, 45(1998),359-373.
[8] H.-L.GauandP.Y.Wu, Numericalrangecircumscribedbytwopolygons,
Linear AlgebraAppl.,382(2004),155-170.
[9] K.GustafsonandD.K.M.Rao, NumericalRange.TheFieldofValuesof
LinearOperatorsandMatrices, Springer,NewYork,1997.
[10] P.R.Halmos, A HilbertSpaceProblemBook, 2nded.,Springer,NewYork,
1982.
[11] R.A.HornandC.R.Johnson, TopicsinMatrixAnalysis, CambridgeUni-
versityPress,Cambridge,1991.
[12] C.K.LiandN.S.Sze, Canonicalforms,higher-ranknumericalranges,totally
isotropicsubspaces,andmatrixequations, Amer.Math.Soc.,136(2008),
3013-3023.
[13] C.K.Li,Y.T.PoonandN.S.Sze, Condition forthehigherranknumerical
rangetobenon-empty, LinearMultilinearAlgebra,2008,1-4,iFirst.
[14] B.Mirman, NumericalrangeandPonceletcurves, LinearAlgebraAppl.,
281(1998) 59-85.