跳到主要內容

簡易檢索 / 詳目顯示

研究生: 徐佳芸
Chia-yun Hsu
論文名稱: Circular Numerical Range of S_n-Matrices
指導教授: 高華隆
Hwa-Long Gau
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 39
中文關鍵詞: 數值域數值域的半徑Blaschke product
外文關鍵詞: Numerical Range, Numerical Radius, Blaschke product
相關次數: 點閱:25下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • $S_n$矩陣的數值域是一個圓盤,我們想知道第$k$層的數值域是否也是圓盤。我們讓$S_5$矩陣的特徵質屬於實數和數值域為圓盤。
    如果$S_n$結合Blaschke product $B$,並且$B$等於$C$合成$D$,其中$C$的degree是2、$D$的degree是3。我們會得到$S_5$的第2層也會是圓,$S_5$的第3層會是單點。
    $A$和$B$是2乘2矩陣,我們有$w(A+B)\leq w(A)+w(B)$基本的不等式。我們對在等號成立時感到興趣。 然而我們得到等號成立時,$A$和$B$矩陣必須滿足一些充分必要條件。


    For an $S_n$-matrix with a circular disc as its numerical range, we want to know whether its rank-$k$ numerical range is also a circular disc. We show that, for an $S_5$-matrix $A$ with real spectrum and circular numerical range, if its associated Blaschke product $B$ has a normalized decomposition $B=C\circ D$, with $C$ of degree 2 and $D$ of degree 3, then $\Lambda_2(A)$ is also a circular disk and $\Lambda_3(A)$ is singleton (cf. Theorem 3.3). For $A$ and $B$ be $2\times2$ matrices, we have $w(A+B)\le w(A)+w(B)$. We are interested in when it becomes
    equality. We obtain a necessary and sufficient condition for $w(A+B)= w(A)+w(B)$ to hold (cf. Proposition 4.3).

    Contents Abstract (inChinese) i Abstract (inEnglish) ii Contents iii 1 Introduction 1 2 Preliminaries 2 2.1 Numericalrangesandnumericalradii................2 2.2 Sn-matrices ..............................5 2.3 FiniteBlaschkeproducts.......................8 2.4 Higher-ranknumericalranges....................10 3 CircularNumericalRangesof Sn-matrices 14 4 NumericalRadiiofSumsofMatrices 19 References 31

    [1] M.D.ChoiandC.K.Li, Constrainedunitarydilationsandnumericalranges,
    J. OperatorTheory46(2001),pp.435–447.
    [2] M.D.Choi,D.W.Kribs,K.Yczkowski, Higher-ranknumericalrangesand
    compressionproblems, LinearAlgebraAppl.,418(2006),828-839.
    [3] M.D.Choi,M.Giesinger,J.A.HolbrookandD.W.Kribs, Geometryof
    higher-ranknumericalranges, LinearandMultilinearAlgebra,56(2008),
    53-64.
    [4] M.D.Choi,J.A.Holbrook,D.W.KribsandK.Yczkowski, Higher-rank
    numericalrangesofunitaryandnormalmatrices, OperatorsandMatrices,
    1 (2008),409-426.
    [5] U.Daeppa,P.Gorkina,A.Shafferb,B.SokolowskycandK.Vossa, Decom-
    posingfiniteBlaschkeproducts, J.Math.Anal.Appl.,426(2015),1201-1216.
    [6] H.-L.GauandP.Y.Wu, Numericalrangeof S(ϕ), LinearandMultilinear
    Algebra, 45(1998),49-73.
    [7] H.-L.GauandP.Y.Wu, Lucas’theoremrefined, LinearandMultilinear
    Algebra, 45(1998),359-373.
    [8] H.-L.GauandP.Y.Wu, Numericalrangecircumscribedbytwopolygons,
    Linear AlgebraAppl.,382(2004),155-170.
    [9] K.GustafsonandD.K.M.Rao, NumericalRange.TheFieldofValuesof
    LinearOperatorsandMatrices, Springer,NewYork,1997.
    [10] P.R.Halmos, A HilbertSpaceProblemBook, 2nded.,Springer,NewYork,
    1982.
    [11] R.A.HornandC.R.Johnson, TopicsinMatrixAnalysis, CambridgeUni-
    versityPress,Cambridge,1991.
    [12] C.K.LiandN.S.Sze, Canonicalforms,higher-ranknumericalranges,totally
    isotropicsubspaces,andmatrixequations, Amer.Math.Soc.,136(2008),
    3013-3023.
    [13] C.K.Li,Y.T.PoonandN.S.Sze, Condition forthehigherranknumerical
    rangetobenon-empty, LinearMultilinearAlgebra,2008,1-4,iFirst.
    [14] B.Mirman, NumericalrangeandPonceletcurves, LinearAlgebraAppl.,
    281(1998) 59-85.

    QR CODE
    :::