| 研究生: |
邱哲彥 Je-yan Chiou |
|---|---|
| 論文名稱: |
線性多偏極掃瞄式合成孔徑雷達影像模擬 Linear Multi Polarimetric Stripmap Mode Synthetic Aperture Radar Image Simulation |
| 指導教授: |
陳錕山
Kun-shan Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 太空科學研究所 Graduate Institute of Space Science |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 合成孔徑雷達 、多偏極 、碎形 |
| 外文關鍵詞: | Synthetic Aperture Radar(SAR), fractal, multi polarimetric |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
合成孔徑雷達系統模擬有助於系統參數的設計,此外模擬影像還
有許多其他的應用層面。根據所得到的地面資料,從其中萃取出需要
的資訊,例如局部入射角、地面覆蓋物等,可以模擬出預設系統的雷
達影像。
本研究主要目的在於模擬側視掃描式合成孔徑雷達影像,針對裸
露之粗糙表面作模擬。使用碎形理論來成長出所需要的表面,根據不
同的碎形維度可描述不同粗糙度的表面。粗糙表面以小散射面做片段
線性近似,估計出各散射面的背向散射係數後,根據雷達回波方程式
來成像,此時所得到的影像稱之為原始資料。將原始資料經過匹配濾
波處理後,即可得到單觀點的斜距雷達影像。
考慮到影響成像的因素,本研究改變了地表粗糙度、觀測角、以
及地表覆蓋物之相對介電係數,在上述不同的情況下分別模擬出雷達
影像,以比較其不同,最後再將一強散射點放入觀測區域中,觀察其
成像,以驗證模擬影像的正確性。
It contributes to the design of the radar systematic parameters to form the synthetic aperture radar (SAR) simulated image. It is helpful to mission design of a radar system if we establish the image simulation system. Different from faster practice: let the backscattering coefficient of each pixel be the performance of SAR image, this research formation the SAR image in the view point of radar echo signal processing, in order to try to get more correct result.
The purpose of this research is to simulate the HH and VV polarimetric stripmap mode SAR image of a randomly rough surface. The main concept is that according to the information of target area, estimates the backscattering coefficient under different polarization and only concerned surface backscattering. Then combining the backscattering information with radar echo equation the raw data formed. After that, processing raw data by match filtering, we can get a single look slant range SAR image. In this research, the randomly rough surface is constructed by the fractal theory and approached by facet model. Considering the factor influencing formation of image, this research has changed the surface roughness, looking angle, and the relative permittivity of land cover. The radar image happens to differentiate simulation in above-mentioned different cases, in order to compare the differently. At last, verified the exactness of the simulation image by putting a strong scatter into target scene and observing the formation of SAR image.
According to the result of simulation, the simulated images have the same geometry structure with the target scene, and the VV polarized image is brighter than the HH one, it is identical with the scattering theory. Besides, it is a satisfactory achievement that the strong backscatter which is put into target scene can be formed correctly in the image.
[1] Askne, J. I. H., Dammert, P. B. G., and Ulander, L. M. H., “C-band repeat-pass interferometric SAR observations of the forest,” IEEE Transactions on Geoscience and Remote Sensing, Vol.35, No.1, pp.25-35, 1997.
[2] Chen, J., Y. Q. Zhou, J. S. Li,“Spaceborne synthetic aperture radar raw data simulation of three dimensional natural terrain,” Proceedings of 2001 CIE International Conference on Radar, pp. 619-623, 2001
[3] Cumming, I. G., F. H. Wong, Digital Processing of Synthetic Aperture Radar Data: Alogrithms and Implementation, Boston: Artech House, 2005
[4] Cascioli, G., R. Seu, “Surface backscattering evaluation by means of the facet model for remote sensing,” Acta Astronautica, Vol. 38, No. 11, pp.849-857, 1996
[5] Falconer, K., Fractal Geometry, Chichester, U.K.: Wiely, 1990
[6] Franceschetti, G., M. Migliaccio, D. Riccio and G. Schirinzi, “ SARAS: A Synthetic Aperture Radar (SAR) Raw singal simulator,” IEEE Trans.on G. & R.S., vol.30, NO.1, pp.110-123,1992
[7] Franceschetti, G., M. Migliaccio and D. Riccio, “SAR simulation of Natural Landscapes,” IGARSS ''94, vol.2, pp.1181-1183,1994
[8] Franceschetti, G., A. Iodice, M. Migliaccio, D. Riccio, “Scattering from Natural Rough Surfaces Modeled by Fractional Brownian Motion Two-Dimensional Processes,” IEEE trans. on Antennas and Propagation, Vol.47, No.9, pp.1405-1415,1999
[9] Franceschetti, G., A. Iodice, M. Migliaccio, D. Riccio, G. Ruello, R. Sieivro, “SAR Raw Signal Simulation of Oil Slicks in Ocean Environments.” IEEE Trans.on G. & R.S., Vol. 40, No. 9, pp.1935-1949, 2002
[10] Fung, A. K., Microwave Scattering and Emission. Models and Their Applications, MA: Artech House, 1994.
[11] Fung, A. K., Z. Li, K. S. Chen, “Backscattering from a randomly rough dielectric surface,” IEEE Trans.on G. & R.S., Vol.30, No.2, pp.356-369, 1992.
[12] Jahn, R., H. Truckenbrodt, “A simple fractal analysis method of the surface roughness,” Journal of Materials Processing Technology, vol. 145, pp.40-45, 2004
[13] Gray, A. L. and Farris-Manning, P. J., “Repeat-pass Interferometry with airborne Synthetic Aperture Radar,” IEEE Trans.on G. & R.S., Vol.31, No.1, pp.180-191, 1993
[14] Leberl, F. W., Radargrammetric Image Processing, MA: Artech House, 1990
[15] Lu, S., F. J. Molz, H. H. Liu, “An efficient, three-dimensional, anisotropic, fractional Brownian motion and truncated fractional Levy motion simulation algorithm based on successive random additions,” Computers & Geosciences, Vol.29, pp.15-25, 2003
[16] Mandelbort, B. B., “How Long is the Coast of Britan? Statistical Seif-Similarity and Fractal Dimension,” Science, vol.156, pp.636-638,1967
[17] Mandelbrot, B. B., Fractals: Form, Chance and Dimension, San Francisco: Freeman, 1977
[18] Mandelbort, B. B., The Fractal Geometry of Nature, New York: Freeman, 1983
[19] Munson, D. C., R. L. Visentin, “ A signal processing view of strip mapping synthetic aperture radar,” IEEE Trans.on A., S & S.P., Vol. 37, No. 12, 1989
[20] Peyton, Z. P., Radar Principles, New York: Wiley, 1998
[21] Sultan-Salem, A. K., G. L. Tyler, “Validity of the kirchhoff approximation for electromagnetic wave scattering from fractal surfaces,” IEEE Trans.on G. & R.S., Vol.42, No.9, pp.1860-1870, 2004
[22] Tsang, L., J. A. Kong, R. T., Shin, Theory of Microwave Remote Sensing, New york: Wiely, 1985
[23] Wu, T, C. Wang, Z. Hong,“ Study on SAR Image Simulation Based on SRTM DEM and Land cover Data,” Proceedings of IGARSS ''05 Symposium, vol. 7, pp. 4670-4672, 2005.
[24] Yin, Z.M.,"New Methods for Simulation of Fractional Brownian Motion," Journal of Computational Physics, Vol.127,pp.66-72,1996