跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張維妮
Wei-Ni Chang
論文名稱: 混合模型之最大概似估計與經驗貝氏分析
指導教授: 樊采虹
Tsai-Hung Fan
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計研究所
Graduate Institute of Statistics
畢業學年度: 91
語文別: 中文
論文頁數: 86
中文關鍵詞: 表現比率最大概似估計法經驗貝氏法混合模型微陣列基因表現勝算差異表現基因
外文關鍵詞: odds, expression ratio, maximum likelihood estimation, cDNA microarray, mixture model, empirical Bayes approach, differential expressions
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著基因晶片( gene chips )技術的發展,其應用也越加廣泛。 本文分析微陣列(microarray)基因表現資料,比較以兩個不同的三成份混合模型(three-component mixture model)描述來自不同基因殘差資料, 使用最大概似估計(maximum likelihood estimator) 與經驗貝氏法(empirical Bayes approach) 估計模型中之參數,以預測機率(predictive probability)及其勝算(odds)鑑別差異表現基因。並將結果運用於一組實際的微陣列資料中。


    第 1 章 緒論1 1.1 研究動機 1 1.2 研究方法 3 第 2 章 模型與方法 8 2.1 均等-常態-均等模型 8 2.2 伽瑪-常態-伽瑪模型 10 2.3 最大概似估計 11 2.4 貝氏估計 16 2.5 差異表現基因之鑑別 21 第 3 章 模擬研究 24 3.1 參數估計與差異表現基因之鑑別25 3.2 模型之穩健性28 3.3 估計方法之比較 30 第 4 章 實例研究 50 4.1 模型配適 50 4.2 差異表現基因之鑑別52 4.3 切斷點的決定54 第 5 章 結論 82 參考文獻 83

    (1) Carlin, B.P. and Louis, T.A. (2000) "Bayes and Empirical Bayes Methods for Data Analysis". New York: Chapman and Hall, 2nd Edition.
    (2) Chen, Y., Dougherty, E.R. and Bittner, M.L. (1997)" Ratio-based decisions and the quantitative analysis of cDNA microarray images". Journal of Biomedical Optics, 2:364-374.
    (3) Dempster, A.P., Laird, N.M. and Rubin, D.B. (1977) "Maximum likelihood estimation from incomplete data via the EM algorithm (with discussion). J. Roy. Statist. Soc., Ser B, 39, 1-38.
    (4) DeRisi, J., Penland, L., Brown, P.O., Bittner, M.L., Meltzer, P.S., Ray, M., Chen, Y., Su, Y. A. and Trent, J. M. (1996) " Use of a cDNA microarray to analyze gene expression patterns in human cancer". Nature Genet. 14: 457-460.
    (5) Dudoit, S., Yang, Y.H., Callow, M. J. and Speed, T.P. (2000){e"Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments". Technical report no. 578.
    (6) George, E.I., Makov, U.E., Smith, A.F.M. (1993) "Conjugate Likelihood Distribution". Scandinavian journal of statistics Vol. 20:147-156.
    (7) Greenwood, J. A. and Durand, D. (1960) "Aids for fitting the gamma distribution by maximum likelihood". Technometrics 2:55-65.
    (8) Kerr, M.K., Martin, M. and Churchill, G.A. (2000) " Analysis of variance for gene expression microarray". Journal of Computational Biology, 7:819-837.
    (9) Newton, M.A., Kendziorski, C. M., Richmond, C. S., Blattner, F. R., and Tsui, K.W. (2000) "On differential variability of expression ratios: Improving statistical inference about gene expression changes from microarray data". Technical Report no. 139.
    (10) Sapir, M. and Churchill, G.A. (2000) "Estimating the posterior probability of differential gene expression from microarray data". Poster, The Jackson Laboratory, http://www.jax.org/research/churchill/.
    (11) Schena, M. (1999) "DNA Microarrays: A Practical Approach". Oxford University Press.
    (12) Shieh, S.R.,and Fan, T.H. (2003) "Analyzing Single-sidle Microarray Gene Expression Data by a Bayesian Approach". Manuscript.
    (13) Tanner, M.A. (1996) "Tools for Statistical Inference". New York: Springer--Verlag.
    (14) Tseng, G.C., Oh, M-K, Rohlin, L., Liao, J.C. and Wong, W.H. (2001) "Issues in cDNA microarray analysis: quality filtering,channel normalization models of variations and assessment of gene effects". Nucleic Acids Research 29, 2549-2557.
    (15) Yang, Y.H., Buckley, M.J. , Dudoit, S. and Speed, T.P. (2000) {Comparison of methods for image analysis on cDNA microarray data. Technical report no. 584.
    (16) Yang, Y.H., Dudoit, S. , Luu, P. and Speed, T.P. (2001) "Normalization for cDNA microarray data". Technical report no. 589.
    (17) Yeung, K.Y., Fraley, C., Murua, A., Raftery, A.E. and Ruzzo, W.L.(2001) "Model-based clustering and data transformation for gene expression data".Bioinformatics 17:977-987.
    (18) Venables, W. N. and Ripley, B. D.(1999) " Modern applied statistics with S-PLUS". Springer, 3rd Edition.

    QR CODE
    :::