| 研究生: |
許譽耀 Yu-Yao Hsu |
|---|---|
| 論文名稱: |
基於多層自我組織映射圖之可視覺化深度學習模型 A Visualized Deep Learning Based on Multilayer Self-Organization Map |
| 指導教授: |
蘇木春
Mu-Chun Su |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 資訊工程學系 Department of Computer Science & Information Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 視覺皮質 、自我組織映射 、適應共振理論 |
| 外文關鍵詞: | Visual Cortex, Self-organizing Map, Adaptive Resonance Theory |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技的發展,對於大腦的研究也越來越豐富,認為大腦的結構是具有學習能力,並想試著學習模仿大腦的結構。如果我們可以將機器加入學習能力,學習生活周遭的事情,是否能夠利用機器取代人類,做一些簡單、重複性高的事,讓人類的生活更加輕鬆。
本論文所使用的網路架構是結合非監督式和監督式的類神經網路。透過影像的輸入,將影像結合並傳到下一層皮質區,最後傳達大腦時,由大腦的經驗做判斷。本論文架構採用自我組織映射,將特徵相似度高的放在一起;再透過適應共振理論,對於整個架構的輸出結果做儲存;最後,利用學習向量量化網路,對適應共振理論所儲存的特徵映射響應圖進行微調,而非使用一般常見的梯度修正。另外,我們透過可視覺化,將每層的特徵轉換成具有解讀性特徵影像,使人可以有效的解讀特徵所賦予的意義。
本論文的實驗中,共使用兩種資料集,分別為手寫辨識資料集和歌曲資料集,並對此架構中的特徵映射圖、適應共振理論的警戒參數、影像二值化、影像結合進行比較和結果分析,在最後對特徵圖做可視覺化的呈現。
In recent years, many people try to understand the structure of the brain. We believed that if we can add machines to learning. It is possible to use machines instead of humans and do some simple, repetitive things.
This neural network architecture is a combination of supervised and unsupervised neural networks. This paper uses the k-means algorithm to group the input image. And then use the self-organizing map to generate feature map. And then use adaptive resonance theory to save the results of response map. Finally, use the learning vector quantization network fine-tuning the results of adaptive resonance theory without the use of Gradient. In addition, we can visualize and transform each layer of features into images that can be understood by the human’s eyes.
In this paper’s experiments, we use two types of datasets. One is MNIST, another is song datasets. The experiment includes the feature maps, the alert parameters of the adaptive resonance theory, binary of image, and image combination. In the end, the feature is visualized presented
The experiment in this thesis has compared to the feature maps, the alert parameters of ART, the image binary, and the different method of the image’s merger.
[1] 洪蘭,創智慧:理解人腦運作,打造智慧機器,初版 編者,臺北市:遠流出版事業股份有限公司,民國九十五年。
[2] V. B. Mountcastle, "An Organizing Principle for Cerebral Function: The Unit Model and the Distributed System," The Mindful Brain, pp. 7-50, 1978.
[3] 蘇木春、張孝德,機器學習:類神經網路、模糊系統以及基因演算法則, 臺北市:全華圖書股份有限公司,民國一百零一年。
[4] P. J. Rousseeuw, "Silhouettes: A graphical aid to the interpretation and validation of cluster analysis," Journal of Computational and Applied Mathematics, vol. 20, pp. 53-65, 1987.
[5] G. A. Carpenter and S. Grossberg, "A massively parallel architecture for a self-organizing neural pattern recognition machine," Computer Vision, Graphics, and Image Processing, vol. 37, pp. 54-115, 1987.
[6] G. A. Carpenter and S. Grossberg, "The ART of adaptive pattern recognition by a self-organizing neural network," Computer, vol. 21, no. 3, pp. 77-88, 1988.
[7] G. A. Carpenter and S. Grossberg, "ART 2: Self-organization of stable category recognition codes for analog input patterns," Applied Optics, vol. 26, pp. 4919-4930, 1987.
[8] M. C. Su and H. T. Chang, "Fast Self-Organizing Feature Map Algorithm," IEEE Transactions on Neural Networks, vol. 11, no. 3, pp. 721-733, 2000.
[9] T. Kohonen, "Improved versions of learning vector quantization," IJCNN, vol. 1, pp. 545-550, 1990.
[10] "Sound," Wikipedia, [Online]. Available: https://en.wikipedia.org/wiki/Sound. [Accessed 17 - May - 2018].
[11] J. Allen, "Short term spectral analysis, synthesis, and modification by discrete Fourier transform," IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 25, pp. 235-238, 1977.
[12] "Mel-frequency cepstrum," Wikipedia, [Online]. Available: https://en.wikipedia.org/wiki/Mel-frequency_cepstrum. [Accessed 17 - May - 2018].
[13] J. C. Brown, "Calculation of a constant Q spectral transform," The Journal of the Acoustical Society of America, vol. 89, pp. 425-434, 1991.
[14] "Equal temperament," Wikipedia, [Online]. Available: https://en.wikipedia.org/wiki/Equal_temperament. [Accessed 17 - May - 2018].
[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet Classification with Deep Convolutional Neural Networks," Advances in Neural Information Processing Systems, vol. 1, pp. 1097-1105, 2012.
[16] "Convolutional neural network," Widipedia, [Online]. Available: https://en.wikipedia.org/wiki/Convolutional_neural_network. [Accessed 17 - Jun - 2018].
[17] "神經網絡之父 Geoff Hinton 推翻畢生心血「反向傳播演算法」:打掉重來,AI 才有未來!," [Online]. Available: https://buzzorange.com/techorange/2017/09/22/geoffrey-hinton-fight-back-propagation/. [Accessed 23 - Jul - 2018].
[18] Y. LeCun, C. Cortes, and C. J. Burges, "THE MNIST DATABASE of Handwritten Digits," [Online]. Available: http://yann.lecun.com/exdb/mnist/. [Accessed 7 - Jun - 2018].
[19] "音符時值," Wikiwand, [Online]. Available: http://www.wikiwand.com/zh-hk/音符時值. [Accessed 13 - Jun - 2018].
[20] "藝術與人文本位課程," [Online]. Available: http://www.sses.tc.edu.tw/~journal/journal017/passport/passport1.htm. [Accessed 11 - Jun - 2018].
[21] "梅爾頻率倒譜係數," Wikipedia, [Online]. Available: https://zh.wikipedia.org/wiki/梅爾頻率倒譜係數. [Accessed 13 - Jun - 2018].
[22] "本論文之相關實驗結果," [Online]. Available: https://drive.google.com/drive/folders/1vBebwqeQqoLaGMlJLk2zgVsxR2N7xyo2?usp=sharing. [Accessed 20 - Jun - 2018].
[23] "Vanishing Gradient Problem," Wikipedia, [Online]. Available: https://en.wikipedia.org/wiki/Vanishing_gradient_problem. [Accessed 18 - Jun - 2018].