跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林志隆
Chih-Lung Lin
論文名稱: 利用掌紋及掌背血管特徵作生物認證
Biometric Verification Using Palmprintsand Vein-patterns of Palm-dorsum
指導教授: 范國清
Kuo-Chin Fan
口試委員:
學位類別: 博士
Doctor
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
畢業學年度: 92
語文別: 英文
論文頁數: 130
中文關鍵詞: 掌背血管特徵掌紋特徵生物特徵認證
外文關鍵詞: Vein-patterns of Palm-dorsa, Palmprints, Biometric Verification
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 最近,利用生物特徵作為身分認證技術的安全控制系統變得很重
    要,過去幾年已有許多討論生物特徵認證技術的文章發表,這些文
    章所描述的方法在使用上均受到某些限制,例如,擷取手掌影像時
    需要一個固定手掌位置及方向的裝置,確保手掌在影像中之位置及
    方向不變,以便可以從不同影像中相同之手掌區域萃取出生物特
    徵;利用掌印影像當作認證的目標物;擷取影像時需要提供適當的、
    充足的光線。這些限制造成使用者的不方便,也限制了生物特徵認
    證技術的實用性。本論文發展出一個新方法,可以避免或消除上述
    的限制。我們的方法可完全消除使用固定裝置(docking device)的
    限制,也可克服使用掌印的限制,光線條件的限制也可避免。
    論文中利用手掌的生物特徵提出兩個生物特徵認證技術,一個
    是利用主掌紋為特徵,另一個技術是利用掌背血管作為認證的特
    徵。這兩個方法的重要特性是不需事先知道認證目標物的相關知
    識,所有參數均可自動設定;此外,上述的三種使用上的限制也可
    避免。最後我們也提出實驗結果驗證方法之效果。


    Recently, personal verification based on biometric features
    gradually becomes an important and highly demand technique for
    security access systems. During the past, numerous literatures discussing
    biometric verification using palm features have been reported. However,
    they are all constrained by some limitations, such as the utilization of
    docking devices to constrain the palm position while acquiring palmprint
    images, the applying of inked palmprint images as the objects, and the
    requirements of adequate lighting conditions, etc. These limitations
    hinder the conveniences of users and the practicalities of verification
    methods. In this dissertation, novel methods are devised and developed
    to alleviate or remove theses limitations. In our work, the limitation
    imposed by the docking devices is removed completely. Furthermore,
    the inconveniences introduced by the applying of inked palmprint
    images as objects are avoided. Finally, the restrictions of lighting
    conditions are also avoided.
    In this dissertation, we propose two approaches of biometric
    verification based on the palm features, which are principal palmprints
    and vein-patterns of palm-dorsa, respectively. The crucial characteristics
    of the proposed methods are that no prior knowledge about the objects is
    necessary, the parameters can be set automatically, and the limitations as
    mentioned above can be alleviated.
    In the palmprint verification approach, scanner is adopted as the
    input device for capturing palmprint images with the advantages of no
    palm inking and no requirement of docking device. Two finger-webs are
    automatically selected as the datum points to define the Region of
    Interest (ROI) in the palmprint images. Next, hierarchical decomposition
    is employed to extract the principal palmprint features inside the ROI,
    which includes direction and multiresolution decompositions. The
    former extracts principal palmprint features from each ROI. The latter
    processes the images with principal palmprint features to extract the
    dominant points from the images at each resolution. Finally, normalized
    correlation function is utilized to evaluate the similarity between two
    palmprint images. Experiments were conducted on a wide variety of
    palmprint images and the results are satisfactory with acceptable
    accuracy rate (FRR: 0.75% and FAR: 0.56%). The results reveal that our
    proposed approach is feasible and effective in palmprint verification
    without the needs of docking devices or palm inking.
    In the vein-patterns verification approach, an infrared (IR) camera
    is adopted as the input device to capture the thermal images of
    palm-dorsa. Likewise, two of the finger-webs are automatically selected
    as the datum points to define the Region of Interest (ROI) on the thermal
    images. Within each ROI, feature points of the vein-patterns (FPVPs) are
    extracted by modifying the basic tool of watershed transformation based
    on the properties of thermal images. According to the heat conduction
    law (the Fourier law), multiple features can be extracted from each
    FPVP for verification. Multiresolution representations of images with
    FPVPs are obtained using multiple multiresolution filters (MRFs) that
    extract the dominant points by filtering miscellaneous features for each
    FPVP. A hierarchical integrating function is then applied to integrate
    multiple features and multiresolution representations. The former is
    integrated by an inter-to-intra personal variation ratio and the latter is
    integrated by a stack filter. We also introduce a logical and reasonable
    method to select a trained threshold for verification. The proposed
    approach can achieve an acceptable accuracy rate (FRR: 2.3% and FAR:
    2.3%). The experimental results demonstrate that our proposed approach
    is valid and effective for vein-pattern verification.

    Contents Contents............................................................................................................. i List of Figures ................................................................................................. iv List of Tables................................................................................................. viii Chapter 1 Introduction .................................................................................. 1 1.1 Motivation............................................................................................. 1 1.2 Survey of related works ........................................................................ 2 1.2.1 Verification Using Palmprint Images ......................................... 2 1.2.2 Verification Using Thermal Images of Palm-dorsa Vein-patterns..................................................................................... 4 1.3 Overview of the Dissertation ................................................................ 5 1.4 Organization of the Dissertation ........................................................... 8 Chapter 2 Data Collection........................................................................... 10 2.1 Collection of Palmprint Images .......................................................... 10 2.2 Collection of Thermal Images of Vein-patterns ................................. 14 Chapter 3 Preprocessing and Region of Interest (ROI) Locating............ 20 3.1 Introduction......................................................................................... 20 3.2 ROI Locating of Palmprint images..................................................... 22 3.2.1 Palm Region Segmentation....................................................... 22 3.2.2 Finger-webs locating................................................................. 25 3.3 ROI Locating of Vein-pattern Images ................................................ 31 Chapter 4 Biometric Verification Using Palmprint Images........................ 35 4.1 Introduction......................................................................................... 35 4.2 Principal Palmprint Features Extraction Based on Hierarchical Decomposition....................................................................................... 37 4.2.1 Directional Decomposition ....................................................... 38 4.2.2 Multiresolution Analysis with Multiresolution Filter............... 45 4.3 Template library construction ............................................................. 48 4.4 Verification ......................................................................................... 50 4.5 Experimental results............................................................................ 51 Chapter 5 Biometric Verification Using Thermal Images of Palm-dorsa Vein-patterns .................................................................................................. 58 5.1 Introduction......................................................................................... 58 5.2 Feature Points and Multiple Features Extraction................................ 61 5.2.1 Feature Points Extraction .......................................................... 62 5.2.2 Multiple Features Extraction..................................................... 68 5.3 Multiresolution Analysis and Multiresolution Representation........... 68 5.4 Design of Integration Function ........................................................... 74 5.4.1 Integration Function for Multiple Features............................... 74 5.4.2 Integration Function for MRA.................................................. 77 5.5 Selecting the Trained Threshold ......................................................... 84 5.6 Experimental Results .......................................................................... 87 Chapter 6 Conclusions ................................................................................ 93 6.1 Conclusions......................................................................................... 93 6.2 Future researches................................................................................. 95 References ...................................................................................................... 97 Publication List ................................................................................................ 1 Journal papers ............................................................................................. 1 Conference papers....................................................................................... 1

    [1] A. K. Jain, R. Bolle and S. Pankanti, Biometrics Personal
    Identification in Networked Society, Kluwer Academic Publishers,
    Massachusetts, 1999.
    [2] Y.Yoshitomi, T.Miyaura, S.Tomita. and S.Kimura, “Face
    Identification Thermal Image Processing,” Proceeding 6th IEEE
    International Workshop on Robot and Human Communication,
    RO-MAN'' 97 SENDAI.
    [3] J.M.Cross and C.L. Smith,” Thermographic imaging of the
    subcutaneous vascular network of the back of the hand for biometric
    identification,” Institute of Electrical and Electronics Engineers 29th
    Annual 1995 International Carnahan Conference on Published:
    1995 , Page(s): 20 -35
    [4] B. Miller,” Vital sign of identify,” IEEE Spectrum, 31(2), pp. 22-30,
    1994.
    [5] A. Jain, L. Hong and R. Bolle,” On-line fingerprint verification,”
    IEEE Trans. Pattern Anal. Mach. Intell., vol. 19, pp. 302-313, April,
    1997.
    [6] L. Coetzee, and E. C. Botha, “Fingerprint recognition in low quality
    images,” Pattern Recognition, vol. 26, pp. 1441-1460, October,
    1993.
    [7] C. C. Han, P. C. Chang, and C. C. Hsu,” Personal identification
    using hand geometry and palm-print,” Fourth Asian Conference on
    Computer Vision (ACCV),pp.747-752,2000.
    [8] H. J. Lin, H. H. Guo, F. W. Yang and C. L. Chen,” Handprint
    Identification Using Fuzzy Inference,” The 13th IPPR Conference on
    Computer Vision Graphics and Image Processing, pp 164-168,2000.
    [9] D. Zhang and W. Shu,” Two novel characteristics in palmprint
    verification: datum point invariance and line feature matching,”
    Pattern Recognition vol. 32, pp. 691-702, 1999.
    [10] J. Chen, C. Zhang and G. Rong,” Palmprint recognition using
    crease,” International Conference on Image Processing, vol. 3 , pp.
    234 –237, 2001.
    [11] W. K. Kong and D. Zhang,” Palmprint texture analysis based on
    low-resolution images for personal authentication,” 16th
    International Conference on Pattern Recognition, vol. 3 , pp.
    807 –810, 2002.
    [12] X. Wu, K. Wang and D. Zhang, “Fuzzy directional element energy
    feature (FDEEF) based palmprint identification,” 16th International
    Conference on Pattern Recognition, vol. 1 , pp. 95 –98, 2002.
    [13] N. Duta, A. K. Jain and K. V. Mardia, ”Matching of palmprints,”
    Pattern Recognition Letters , vol. 23, issue 4, pp. 477-485, 2002.
    [14] J. You, W. Li and D. Zhang, ”Hierarchical palmprint identification
    via multiple feature extraction ,” Pattern Recognition , vol. 35, issue
    4, pp. 847-859, 2002.
    [15] G. Lu, D. Zhang and K. Wang, ”Palmprint recognition using
    eigenpalms features,” Pattern Recognition Letters ,vol. 24, issue
    9-10, pp. 1463-1467, June, 2003.
    [16] C. C. Han, H. L. Cheng, C. L. Lin and K. C. Fan,” Personal
    Authentication Using Palmprint Features ”, Pattern Recognition, vol.
    36, issue 2, pp. 371~381, 2003.
    [17] A. K. Jain and N. Duta, ”Deformable matching of hand shapes for
    verification,” Proceeding of ICIP, 1999.
    [18] D. G. Joshi, Y. V. Rao, S. Kar, V. Kumar and R. Kumar,”
    Computer-vision-based approach to personal identification using
    finger crease patterns,” Pattern Recognition, vol. 31, pp. 15~22,
    1998.
    [19] A.J. Rice, “A quality approach to biometric imaging,” Image
    Processing for Biometric Measurement, IEE Colloquium Apr 1994,
    pp. 4/1~4/5
    [20] S. K. Im, H. M. Park, S. W. Kim, C. K. Chung and H. S
    Choi, ”Improved vein pattern extracting algorithm and its
    implementation,” Consumer Electronics, 2000.ICCE. 2000 Digest of
    Technical Paper International Conference on, 2000, pp. 2~3.
    [21] S. K. Im, H. M. Park, Y. W. Kim, S. C. Han, S. W. Kim, and C. H.
    Hang, ”An biometric identification system by extracting hand vein
    patterns,” Journal of the Korean Physical Society, vol. 38, pp.
    268~272, March 2001.
    [22] W. Li, D. Zhang and Z. Xu, “Image alignment based on invariant
    features for palmprint identification,” Signal Processing: Image
    Communication ,vol. 18, issue 5, pp. 373-379, May, 2003.
    [23] A. J. Mehnert, J. M. Cross and C. L. Smith, “Thermalgraphic
    imaging: segmentation of the subcutaneous vascular network of the
    back of the hand (Research Report),” Perth, Western Austrlia: Edith
    Cowan University, Australian Institute of Security and Applied
    Technology, 1993.
    [24] H. Kuno, Sekigaisen Kougaku, pp. 22, IEICE, Tokyo, 1994 (in
    Japanese).
    [25] E. F. Godik and Y. V. Guljaev, “ Functional imaging of the human
    body,” IEEE Engineering in Medicine and Biology, 10(4), pp. 21~29,
    1991
    [26] W. L. Wolfe and G. J. Zissis, The infrared handbook, Prepared by
    The Infrared Information and Analysis (IRIA) Center, Environmental
    Research Institute of Michigan for the Office of Naval Research,
    Department of the Navy, Washington, DC, 1978.
    [27] D. C. Harris, Infrared window and dome materials, The
    International Society for Optical Engineering, published by SPIE,
    Bellingham, Washington, July 1992.
    [28] A. A. Newman, (Ed.), Photographic techniques in scientific
    research (vol. 2), London: Academic Press, 1976.
    [29] M. Sonka, V. Hlavac and R. Boyle, Image Processing, Analysis,
    and Machine Vision, Second edition, PWS publishing, New York,
    1999.
    [30] C. L. Lin, K. C. Fan and F. D. Chou,” A novel approach to
    palmprint verification utilizing finger-webs as datum points,”
    submitted to Image and Vision Computing.
    [31] X. Z Wang, H. W. Yang, M. H. Zhao and J. Sun,” A decision tree
    based on hierarchical decomposition,” International Conference on
    Machine Learning and Cybernetics, vol.4, pp. 1824 –1828, Nov.
    2002.
    [32] G. Borgefors, G. Ramella and G. Sanniti Di Baja,” Hierarchical
    decomposition of multiscale skeletons,” IEEE Trans. Pattern
    Analysis and Machine Intelligence, vol. 23, issue 11, pp. 1296 –1312,
    Nov. 2001.
    [33] E. Sharon, A. Brandt, and R. Basri,” Fast multiscale image
    segmentation,” IEEE Conference on Computer Vision and Pattern
    Recognition, vol. 1, pp. 70 -77,13-15 June 2000.
    [34] H. Rom and G. Medioni,” Hierarchical decomposition and axial
    shape description,” IEEE Computer Society Conference on Computer
    Vision and Pattern Recognition, CVPR ''92., pp 49 –55, 15-18 June
    1992 .
    [35] R. C. Gonzalez and R. E. Woods, Digital Image Processing,
    published by Addison-Wesley Publishing Company, Inc., 1993.
    [36] P. S. Wu and M. Li,” Pyramid edge detection based on stack filter,”
    Pattern Recognition Letters, vol. 18, pp.239~248, 1997.
    [37] J. Yoo, E. J. Coyle and C. A. Bouman,” Dual Stack Filters and the
    Modified Difference of Estimates Approach to Edge Detection,”
    IEEE Trans. Image Processing, vol. 6, pp. 1634~1645, December
    1997.
    [38] J. Yoo, C. A. Bouman, E. J. Delp, and E. J. Coyle, “The nonlinear
    prefiltering and difference of estimates approaches to edge detection:
    Application of stack filters,” CVGIP: Graph. Models Image Process.,
    vol. 55, Mar. 1993.
    [39] S. Mallat, “Multifreguency channel decompositions of images and
    wavelet models,” IEEE Trans. Acoustics, Speech, Signal Processing,
    vol. ASSP-37, no.12 pp. 2091-2110, DEC.1989.
    [40] J. koenderink, “The structure of images,” in Biological Cybernetics.
    New York: Springer Verlag. 1984.
    [41] Y. Shinagawa and T. L. Kunil,” Unconstrained automatic images
    matching using multiresolutional critical-point filter,” IEEE Trans.
    on Pattern Analysis and Machine Intelligence, vol. 20, pp. 994~1010,
    September 1998.
    [42] Y. Qi and B. R. Hunt, “ A multiresolution approach to computer
    verification of handwritten signatures,” IEEE Trans. Image
    Processing, vol. 4, pp. 870~874, June 1995.
    [43] J. You and P. Bhattacharya, “ A wavelet- based coarse-to-fine
    image matching scheme in a parallel virtual machine environment,”
    IEEE Trans. Image Processing, vol. 9, pp. 1547~1559, June 2000.
    [44] S. M. Bozic, Digital and Kalman Filtering, Edward Arnold, 1979.
    [45] K. S. Fu, R. C. Gonzalez and C. S. G. Lee, Robotics: Control,
    Sensing, Vision, and Intelligence, pp. 426-427. McGraw-Hill, New
    York, 1987.
    [46] M. R. Spiegel, Theory and Problems of Probability and Statistics,
    Schaum’s Outline Series, McGraw-Hill, New York, 1988.
    [47] F. Kimura and M. Shridhar,” Handwritten numeral recognition
    based on multiple algorithms,” Pattern Recognition, vol. 24,
    pp.976~983, 1991.
    [48] S. N. Shridhar,” Recognition of handwritten and machine printed
    text of postal address interpretation,” Pattern Recognition Letters,
    vol. 14, pp.291~302, 1993.
    [49] J. Cao, M. Ahmadi and M. Shridhar,” Recognition of handwritten
    numerals with multiple feature and multistrage classifier,” Pattern
    Recognition, vol. 28, pp. 153~160, 1995.
    [50] S. Beucher, ”The watershed transformation applied to image
    segmentation,” 10th Pfefferkorn Conf. on Signal and Image
    Processing in Microscopy and Microanalysis, 16-19 Sept. 1991,
    Cambridge, UK, Scanning Microscopy International, suppl. 6. 1992,
    pp. 299-314.
    [51] K. Huang and H. Yan,” Off-line signature verification based on
    geometric feature extraction and neural network classification,”
    Pattern Recognition , vol. 30, pp. 7~17, 1997.
    [52] G.Y. Chen, T.D. Bui. and A. Krzyzak,” Contour-based handwritten
    numeral recognition using multiwavelets and neural networks,”
    Pattern Recognition, vol. 36, pp. 1597~1604, 2003.
    [53] K. Huang and H. Yan,” Signature using multiple neural
    classifiers,” Pattern Recognition, vol. 30, pp. 1~7, 1997.
    [54] M. A. Ismail and S. Gad,” Off-line arabic signature recognition and
    verification,” Pattern Recognition, vol. 33, pp. 1727~1740, 2000.
    [55] K. Fukunaga, Introduction to Statistical Pattern Recognition, 2nd ed.
    New York: Academic, 1972.
    [56] P. T. Yu and R. C. Chen,” Fuzzy stack filters- their definitions,
    fundamental properties and application in images processing,” IEEE
    Trans. Image Processing, vol. 5, pp. 838~854, December 1996.
    [57] W. L. Lee and K. C. Fan, “ Design of optimal stack filter and under
    MAE criterion,” IEEE Trans. Signal Processing, vol.47,
    pp.3345~3355, December 1999.
    [58] Y. Nakagawa and A. Rosenfeld, “ A note on the use of local min
    and max operations in digital picture processing,” IEEE Trans. Syst.,
    Man and Cybern., vol. SMC-8, pp. 632-635, Aug. 1978.
    [59] C. C. Han K. C. Fan and Z. M. Chen, “ Finding of optimal stack
    filter by graphic searching method,” IEEE Trans. Signal Processing,
    vol. 45 pp. 1857-1862, July 1996.
    [60] T. W. Ridler and S. Calvard,” Picture thresholding using an
    iterative selection method,” IEEE transaction on System, Man and
    Cybernetics, vol. 8, pp.630~632,1978.

    QR CODE
    :::