| 研究生: |
鄧祥鴻 Xiang-Hong Deng |
|---|---|
| 論文名稱: |
利用溶劑萃取法結合綠色溶劑製備鈣鈦礦太陽能電池 Solvent-solvent Extraction for Perovskite Solar Cells Fabricated with Green Solvent |
| 指導教授: | 詹佳樺 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 鈣鈦礦 、溶劑萃取 、過飽和度 、表面形貌 、電洞傳輸 |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們為了能在大氣環境下製備鈣鈦礦太陽能電池元件,選擇以溶劑萃取法來製作電池元件,並以乙酸乙酯以及正庚烷這兩種高安全性且低毒性的萃取溶劑,取代一般溶劑萃取製程所使用的乙醚。希望在維持元件效率的同時也能提高製程的安全性,使鈣鈦礦太陽能電池在未來能有機會以工業大量生產。
然而單純以乙酸乙酯或是正庚烷為萃取溶劑所製作的元件有著嚴重的缺陷,因此我們將乙酸乙酯和正庚烷以一定比例混合做為萃取溶劑,利用萃取過程中溶液過飽和度的差異控制鈣鈦礦的結晶過程與表面形貌;其中以乙酸乙酯:正庚烷體積比1:1.5的混合溶劑做為萃取溶劑表現最為穩定,並且較高比例的正庚烷會使鈣鈦礦主動層的表面形貌變得粗糙,有助於增加鈣鈦礦主動層與電洞傳輸層的接觸面積,提升電洞傳輸速率,使電池元件的電流密度有所增益。
最後,做為對照組之使用乙醚做為萃取溶劑的電池元件表現最佳可達到VOC=1.06V,JSC=20.10mA/cm2,FF=75.41%,PCE=16.12%;而使用乙酸乙酯:正庚烷體積比1:1.5的混合溶劑做為萃取溶劑的電池元件表現最佳為VOC=1.06V,JSC=20.58mA/cm2,FF=73.16%,PCE=15.99%。使用乙酸乙酯與正庚烷的混合溶劑做為萃取溶劑的元件,能夠得到與乙醚萃取的元件相近的表現,且在JSC方面能有所增益。
In this study, we used solvent-solvent extraction to fabricate perovskite solar cells under atmosphere. Moreover, because the traditional extraction solvent diethyl ether is unsafe and toxic, we choose two low-toxic extraction solvent ethyl acetate and n-heptane to replace it. We not only maintained the performance of the cell with different extraction solvent but also improved the safety of the fabrication process. The fabrication process can realize the application of industry in the future.
However, the cells with ethyl acetate or n-heptane as the extraction solvent had serious instability and defects. Therefore, we mixed ethyl acetate and n-heptane as the extraction solvent. We controlled the supersaturation of the solution during the extraction to change the crystallization process and surface morphology of perovskite. We found the mixed solvent of the ratio of ethyl acetate to n-heptane is 1:1.5 having best stability as the extraction solvent. On the other hand, the rough surface morphology rough could increase interface contact between the perovskite layer and the hole transport layer raised the opportunity of transporting holes.
Finally, the cells with diethyl ether as the extraction solvent had open-circuit voltage (VOC) of 1.06V, short-circuit current density (JSC) of 20.10 mA/cm2, fill factor (FF) of 75.41%, and power conversion efficiency (PCE) of 16.12%. In contrast, the cells with the ratio of ethyl acetate to n-heptane is 1:1.5 as the extraction solvent had VOC of 1.06V, JSC of 20.58mA/cm2, FF of 73.16%, and PCE of 15.99%.All in all, the performance of the cells with mixed solvent as extraction solvent was similar to diethyl ether, and an enhancement of JSC was obtained.
參考文獻
1. M. Grätzel.’ The light and shade of perovskite solar cells’. Nature Materials. Vol 13. 838–842. (2014)
2. Jung HS and Park NG.’ Perovskite solar cells: from materials to devices’. Small. Vol 11. 10–25. (2015)
3. John D. Meakin. ’ Photovoltaic conversion ’. Modern Physics Web Essay. (2014)
4. Martin A. Green et al.‘The emergence of perovskite solar cells’. Nature Photonics. Vol 8. 506–514. (2014)
5. T. Miyasaka et al. ‘Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells’. Journal of the American Chemical Society. Vol 131. 6050-6051. (2009)
6. M. Grätzel et al. ’Lead Iodide Perovskite Sensitized All-Solid- State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%’. Scientific Reports. Vol 6.591. (2012)
7. M. Grätzel et al.’ Sequential deposition as a route to high-performance perovskite-sensitized solar cells’.Nature. Vol 499. 316–319. (2013)
8. L.Spiccia et al.’Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells’. Nano Energy.Vol 10. 10-18.(2014)
9. Y.B.Chen et al.’ A Fast Deposition‐Crystallization Procedure for Highly Efficient Lead Iodide Perovskite Thin‐Film Solar Cells’. Angewandte Chemie.Vol 126. 10056-10061.(2014)
10. S.Seok et al.‘Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells’. Nature Materials. Vol 13.897–903.(2014)
11. L.Ouyang et al.’ Improved Crystallization of Perovskite Films by Optimized Solvent Annealing for High Efficiency Solar Cell’.ACS Applied Materials & Interfaces. Vol 7(43). 24008–24015.(2015)
12. N.P.Padture et al.’Room-temperature crystallization of hybrid-perovskite thin films via solvent–solvent extraction for high-performance solar cells’. Journal of Materials Chemistry A. Vol 3. 8178-8184.(2015)
13. S.Y.Dai et al. ’Temperature-assisted rapid nucleation: a facile method to optimize the film morphology for perovskite solar cells’.Journal of Materials Chemistry A.Vol 5. 20327-20333. (2017)
14. L.Han et al. ’Hybrid interfacial layer leads to solid performance improvement of inverted perovskite solar cells’. Energy&Environmental Science. Vol 8.629–640. (2015)
15. V.Getautis et al.‘A Methoxydiphenylamine-Substituted Carbazole Twin Derivative: An Efficient Hole-Transporting Material for Perovskite Solar Cells’. Angewandte Chemie International Edition. Vol 54.11409–11413.(2015)
16. F.Giordano1 et al.’Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells’. Nature Communications. Vol 7. 10379. (2016)
17. W.G.Diau et al.’Solvent-extraction crystal growth for highly efficient carbon-based mesoscopic perovskite solar cells free of hole conductors’. Journal of Materials Chemistry A. Vol 4. 3872-3878. (2016)
18. C.Liu et al.’Single-walled carbon nanotubes as efficient charge extractors in perovskite solar cell’.2016 IEEE 16th International Conference on Nanotechnology. DOI: 10.1109/NANO.2016.7751378.(2016)
19. F.Huang et al.’Synergic Interface Optimization with Green Solvent Engineering in Mixed Perovskite Solar Cells’. Advanced Energy Materials. Vol 7. Issue 20.1700576. (2017)
20. T.M.Watson et al. 'Humidity resistant fabrication of CH3NH3PbI3 perovskite solar cells and modules’. Nano Energy. Vol 39. 60-68. (2017)
21. S.Yang et al.’Ultrasmooth Perovskite Film via Mixed Anti-Solvent Strategy with Improved Efficiency’. ACS Applied Materials & Interfaces. Vol 9. 3667−3676.(2017)
22. S.Yang et al.’Nucleation mediated interfacial precipitation for architectural perovskite films with enhanced photovoltaic performance’.Nanoscale. Vol 9. 2569.(2017)
23. L.Lei et al. ’Novel Perovskite Solar Cell Architecture Featuring Efficient Light Capture and Ultrafast Carrier Extraction’. ACS Applied Materials & Interfaces. Vol 9. 23624−23634.(2017)
24. M.Li et al. ’Diffraction-Grated Perovskite Induced Highly Efficient Solar Cells through Nanophotonic Light Trapping’. Advanced Energy Materials. Vol 8.Issue 12.1702960. (2018)
25. J.Martorell et al. ’Natural Random Nanotexturing of the Au Interface for Light Backscattering Enhanced Performance in Perovskite Solar Cells’. ACS Photonics.DOI: 10.1021/acsphotonics.8b00099 (2018)
26. C.J.Brabec et al. ‘Pushing efficiency limits for semitransparent perovskite solar cells’. Journal of Materials Chemistry A. Vol 3. 24071–24081. (2015)
27. N.P.Padture et al.’ Square‐Centimeter Solution‐Processed Planar CH3NH3PbI3 Perovskite Solar Cells with Efficiency Exceeding 15% ’. Advanced Materials. Vol 27. Issue 41. 6363-6370. (2015)
28. N.P.Padture et al.’Manipulating Crystallization of Organolead Mixed-Halide Thin Films in Antisolvent Baths for Wide-Bandgap Perovskite Solar Cells’. ACS Applied Materials & Interfaces. Vol 8.2232−2237.(2016)
29. V.O.Eze and T.Mori. ’ Enhanced photovoltaic performance of planar perovskite solar cells fabricated in ambient air by solvent annealing treatment method’. Japanese Journal of Applied Physics. Vol 55. 122301. (2016)
30. A.Uddin et al.’ Controlled Ostwald ripening mediated grain growth for smooth perovskite morphology and enhanced device performance’ Solar Energy Materials and Solar Cells. Vol 167.87-101.(2017)
31. T.Park et al.’ Simple post annealing-free method for fabricating uniform, large grain-sized, and highly crystalline perovskite films’. Nano Energy. Vol 34. 181-187.(2017)
32. H.Burrell."Solubility Parameters" Interchemical Review. Vol 14.13-16.(1995)
33. C.S.Biyani et al. ’The Role of Urinary Kidney Stone Inhibitors and Promoters in the Pathogenesis of Calcium Containing Renal Stones’. EAU-EBU Update Series. Vol 5. Issue 3. 126-136.(2007)
34. W.Ke et al. ’Perovskite Solar Cell with an Efficient TiO2 Compact Film’. ACS Applied Materials & Interfaces. Vol 6. 15959-15965.(2014)
35. T.Miyasaka et al. ’Efficiency Enhancement of Hybrid Perovskite Solar Cells with MEH-PPV Hole-Transporting Layers’.Scientific Reports. Vol 6.34319.(2016)